
LECTURE 3: SSD ACCESS

Information in Storage Devices

049063 – EE Department, Technion

HDD and SSD

• Has been around

forever

• Improves, but looks the

same

• Predictable

performance

• Fast to respond

• Heavily hyped

– High media exposure

• You know can do

wonders

– But most encounters less
exciting

Solid-State Drive (SSD)

• Silicon-based array of memory cells
• with standard interface (HDD replacement)

• Invented late ’90s (M-Systems, Israel)
• Uses NAND flash for maximal density

• More expensive, but much faster

• Capacity scales by “Moore’s law”

Flash: No Random-Access Erase

• New: Erase unit

• Physical erase of cells: only full blocks

• Write → program/erase

L_unit P_unit

E_unit

R/W R/W

Erase

page block

No In-Place Updates

W L_write: L_unit P_write

E_unit

used

P_unit

W L_write: LBA=m P_write?

E_unit

used

update

LBA=m

Option 1: RMEW

W

P_reads

LBA=m

P_writesE_erase

update

LBA=m

E_unit

modify

E_unit

Option 2: Invalidation

W

P_write

LBA=mupdate

LBA=m

E_unit

used, invalid

Flash State Diagram

free used

dirty

L_write

L_update

(L_write elsewhere)
E_erase

Issues

Option 1: RMEW

• Time

• Wear

Option 2: Invalidation

• Over-provisioning

• Indirection

SSD
1) #PBA > #LBA

2) Mapping layer

SSD Performance vs. Technology

• SLC: 1 bit/cell

– “single-level cell”

• MLC: 2 bits/cell

– “multi-level cell”

• TLC: 3 bits/cell

– “triple-level cell”

SSD Architecture and
parallelization

Blocks

(E-units)
• Package/Die (Chip) – independent R/P/E units

• Plane – multiple planes of the same die can perform the same

command (R/P/E) in parallel

• Channel – independent transfers between controller and packages

• Parallelization: perform commands in parallel

• Interleaving: Use channel for one package while the other is busy

Flash Package Example

Address Mapping

• Direct map (LBA→PBA)

– Injective (1-1)

• Inverse map (PBA→LBA)

– Range includes LBAs and

x: dirty

: free

1

2

3

1

2
3
4

5

6

LBA

PBA

1

2
3
4

5

6

1

2

3

x

LBAPBA

Flash Mapping Layer

• Direct map

– Inquired on read

– Updated on write

• Inverse map

– Find free PBA

– Updated on write

– Inquired for “clean” operations

LBA PBA

PBA LBA/x/

Clean Operations

• Reclaim dirty pages

• Also called garbage collection

1) Choose an E_unit (how?)

2) Copy all used L_units to other E_unit(s)

3) Erase E_unit

Procedure:

1) Minimize copy operations

2) Level the wear of E_units

Objectives:

Write Amplification (WA)

• SSD with 1 spare block

12840

13951

141062

151173

block
page

Write Amplification (WA)

• First 4 writes

• Example:

– Writes: 0,4,8,12,

012840

413951

8141062

12151173

Write Amplification (WA)

• Incoming write: LBA 1

• Example:

– Writes: 0,4,8,12,1

012840

413951

8141062

12151173

Full!
Choose for cleanup

Write Amplification (WA)

• Copied 2 valid pages in the cleaned block

• Example:

– Writes: 0,4,8,12,1

012840

413951

8141062

12151173

2

3

1

WA Analysis

• Definition – Write Amplification:

The ratio of the total number of internal writes to the

number of externally-requested writes.

• Notation:

Write Amplification WA, WA≥1

• Notes

1. Large is bad (more time, wear)

2. Depends on mapping, workload

WA Analysis

• More notation:

T: # physical E_units

Np: # P_units per E_unit

U: #L_units/Np

Sf: spare factor 𝑆𝑓 =
𝑇−𝑈

𝑇

𝜌: over-provisioning 𝜌 =
𝑇

𝑈
− 1

UNp L_units stored on TNp P_units

0 ≤ 𝑆𝑓 < 1

𝜌 ≥ 0

Effect of Spare

012840

413951

8141062

12151173

012840

413951

8141062

12151173

5

14

10

9

Little spare More spare

Clean (Garbage Collection) Policies

1. LRU – least-recently written

– Pick oldest in the “log” of E_units

2. Greedy

– Pick the E_unit with max # dirty P_units

– Also called min-valids

Evaluation with Traces

Trace Results - Greedy

0

0.5

1

1.5

2

2.5

3

3.5

4

10% 15% 20% 25% 30% 35% 40% 45% 50%

W
A

OVER PROVISIONING (RHO)

TRACE NAME: PRXY

REG_RW1greedy

LRU Cleaning - Model

oldnew

rate=1

external

writes

T
rate=A-1 copy if not dirty

valid

dirty

• Clean the oldest in the E_unit chain

• Special case: Np=1

• T units in chain, U of them are valid

• A copy of a unit happens if still valid when oldest

Facts:

LRU Cleaning - Analysis

oldnew

rate=1

external

writes

T
rate=A-1

• Special case: Np=1

• Uniform workload (random write)

• Pr{host write is addressed to valid E_unit i} = 1/U, for all i

• # host writes in a full cycle M=T/A

• The same L_unit can cycle many times without host update

• Find A (in expectation)

Facts:

Greedy Cleaning - Model

• Clean the E_unit with min # valid (equiv. max # dirty)

• General Np, uniform workload

• Need to calculate the expected min # valid x

• Markov model: states represent # valid in E_unit

“Clean”

E_units
“Dirty”

E_units

E_unit

The Greedy Markov Model

• Define fraction of E_units in state i = fi

• Total number of valid L_units in E_units at state i = 𝒊𝑻𝒇𝒊

• Random writes → Transition rate from state i to i-1 =
𝒊𝑻𝒇𝒊

𝑼𝑵𝒑

• GC transition rate =
𝟏

𝑵𝒑−𝒙

• Find A from steady-state considerations

Analytic Results

Summary

• WA reduces with amount of spare

• LRU GC: simple

• Greedy GC: optimal

• Greedy approaches LRU with large Np

• Another advantage of LRU:

Wear leveling

