
048704/236803
Seminar on Coding for
Non-Volatile Memories

1

• Array of cells, made of floating gate transistors
─ Each cell can store q different levels

─ Today, q typically ranges between 2 and 16

─ The levels are represented by the number of electrons

─ The cell’s level is increased by pulsing electrons
─ To reduce a cell level, all cells in its containing block

must first be reset to level 0
 A VERY EXPENSIVE OPERATION

Rewriting Codes

2

Write-Once Memories (WOM)

• Introduced by Rivest and Shamir, “How to reuse a
write-once memory”, 1982

• The memory elements represent
bits (2 levels) and are irreversibly
programmed from ‘0’ to ‘1’

 Q: How many cells are required to write 100
bits twice?

 P1: Is it possible to do better…?
 P2: How many cells to write k bits twice?
 P3: How many cells to write k bits t times?
 P3’: What is the total number of bits that is

possible to write in n cells in t writes?

1st
Write

2nd
Write

3

Binary WOM Codes

• k1,…,kt:the number of bits on each write
– n cells and t writes

• The sum-rate of the WOM code is

 R = (Σ1
t ki)/n

– Rivest Shamir: R = (2+2)/3 = 4/3

• There are two cases
– The individual rates on each write must all be the same:

fixed-rate

– The individual rates are allowed to be different:
unrestricted-rate

4

The Capacity of WOM Codes

• The Capacity Region for two writes
 C2-WOM={(R1,R2)|∃p∊[0,0.5],R1≤h(p), R2≤1-p}
 h(p) – the entropy function h(p) = -plog(p)-(1-p)log(1-p)

– p – the prob to program a cell on the 1st write, thus R1 ≤ h(p)
– After the first write, 1-p out of the cells aren’t programmed,

thus R2 ≤ 1-p

• The maximum achievable sum-rate is
 maxp∊[0,0.5]{h(p)+(1-p)} = log3

 achieved for p=1/3:
 R1 = h(1/3) = log(3)-2/3
 R2 = 1-1/3 = 2/3

5

WOM Codes Constructions
• Rivest and Shamir ‘82

– [3,2; 4,4] (R=1.33); [7,3; 8,8,8] (R=1.28); [7,5; 4,4,4,4,4] (R=1.42); [7,2;
26,26] (R=1.34)

– Tabular WOM-codes

– “Linear” WOM-codes

– David Klaner: [5,3; 5,5,5] (R=1.39)

– David Leavitt: [4,4; 7,7,7,7] (R=1.60)

– James Saxe: [n,n/2-1; n/2,n/2-1,n/2-2,…,2] (R≈0.5*log n), [12,3; 65,81,64]
(R=1.53)

• Merkx ‘84 – WOM codes constructed with Projective Geometries
– [4,4;7,7,7,7] (R=1.60), [31,10; 31,31,31,31,31,31,31,31,31,31] (R=1.598)

– [7,4; 8,7,8,8] (R=1.69), [7,4; 8,7,11,8] (R=1.75)

– [8,4; 8,14,11,8] (R=1.66), [7,8; 16,16,16,16, 16,16,16,16] (R=1.75)

• Wu and Jiang ‘09 - Position modulation code for WOM codes
– [172,5; 256, 256,256,256,256] (R=1.63), [196,6; 256,256,256,256,256,256] (R=1.71),

[238,8; 256,256,256,256,256,256,256,256] (R=1.88),
[258,9; 256,256,256,256,256,256,256,256,256] (R=1.95),
[278,10; 256,256,256,256,256,256,256,256,256,256] (R=2.01)

6

The Coset Coding Scheme

• Cohen, Godlewski, and Merkx ‘86 – The coset coding scheme

– Use Error Correcting Codes (ECC) in order to construct WOM-codes

– Let C[n,n-r] be an ECC with parity check matrix H of size r×n

– Write r bits: Given a syndrome s of r bits, find a length-n vector e
such that H⋅eT = s

– Use ECC’s that guarantee on successive writes to find vectors that
do not overlap with the previously programmed cells

– The goal is to find a vector e of minimum weight such that only 0s
flip to 1s

7

The Coset Coding Scheme

• C[n,n-r] is an ECC with an r×n parity check matrix H

• Write r bits: Given a syndrome s of r bits, find a length-n
vector e such that H⋅eT = s

• Example: H is aparity check matrix of a Hamming code
– s=100, v1 = 0000100: c = 0000100

– s=000, v2 = 1001000: c = 1001100

– s=111, v3 = 0100010: c = 1101110

– s=010, …  can’t write!

• This matrix gives a [7,3:8,8,8] WOM code

8

Binary Two-Write WOM-Codes

• C[n,n-r] is a linear code w/ parity check matrix H of size r×n

• For a vector v ∊ {0,1}n, Hv is the matrix H with 0’s in the
columns that correspond to the positions of the 1’s in v

v1 = (0 1 0 1 1 0 0)

9

Binary Two-Write WOM-Codes
• First Write: program only vectors v such that rank(Hv) = r

 VC = { v ∊ {0,1}
n | rank(Hv) = r}

– For H we get |VC| = 92 - we can write 92 messages
– Assume we write v1 = 0 1 0 1 1 0 0

v1 = (0 1 0 1 1 0 0)

10

Binary Two-Write WOM-Codes
• First Write: program only vectors v such that rank(Hv) = r,

 VC = { v ∊ {0,1}
n | rank(Hv) = r}

• Second Write Encoding:

• Second Write Decoding: Multiply the received word by H:
 H⋅(v1 + v2) = H⋅v1 + H⋅v2 = s1+ (s1 + s2) = s2

v1 = (0 1 0 1 1 0 0)

1. Write a vector s2 of r bits
2. Calculate s1 = H⋅v1
3. Find v2 such that Hv1

⋅v2 = s1+s2
a

4. v2 exists since rank(Hv1
) = r

a

5. Write v1+v2 to memory

1. s2 = 001
2. s1 = H⋅v1 = 010
3. Hv1

⋅v2 = s1+s2 = 011
a

4. v2 = 0 0 0 0 0 1 1
5. v1+v2 = 0 1 0 1 1 1 1

11

Example Summary
• Let H be the parity check matrix
 of the [7,4] Hamming code
• First write: program only vectors v such that rank(Hv) = 3

 VC = { v ϵ {0,1}
n | rank(Hv) = 3}

– For H we get |VC| = 92 - we can write 92 messages
– Assume we write v1 = 0 1 0 1 1 0 0
– Write 0’s in the columns of H

 corresponding to 1’s in v1: Hv1 d

• Second write: write r = 3 bits, for example: s2 = 0 0 1
– Calculate s1 = H⋅v1 = 0 1 0
– Solve: find a vector v2 such that Hv1

⋅v2 = s1 + s2 = 0 1 1
d

– Choose v2 = 0 0 0 0 0 1 1
– Finally, write v1 + v2 = 0 1 0 1 1 1 1
– Decoding:

1 1 1 0 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

H =

 1 0 1 0 0 0 0

 Hv1 = 1 0 1 0 0 1 0

 1 0 0 0 0 0 1

1 1 1 0 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

. [0 1 0 1 1 1 1]T = [0 0 1]

12

Sum-rate Results

• The construction works for any linear code C
• For any C[n,n-r] with parity check matrix H,

 VC = { v ∊ {0,1}
n | rank(Hv) = r}

• The rate of the first write is:
 R1(C) = (log2|VC|)/n

• The rate of the second write is: R2(C) = r/n
• Thus, the sum-rate is: R(C) = (log2|VC| + r)/n
• In the last example:

– R1= log(92)/7=6.52/7=0.93, R2=3/7=0.42, R=1.35

• Goal: Choose a code C with parity check matrix
H that maximizes the sum-rate

13

Capacity Region and Achievable
Rates of Two-Write WOM codes

14

Relative Vs. Absolute Values

0 1

Less errors

More retention

Jiang, Mateescu, Schwartz, Bruck,

“Rank modulation for Flash Memories”, 2008
15

The New Paradigm
Rank Modulation

Absolute values  Relative values

Single cell  Multiple cells

Physical cell  Logical cell

16

Rank Modulation

3

2

1

4

1 2 3 4

Ordered set of n cells

Assume discrete levels

Relative levels define a permutation

Basic operation: push-to-the-top

Overshoot is not a concern

Writing is much faster

Increased reliability (data retention)

17

3 2 1 4

2 3 1 4

3 2 4 1

18

 2134  2143

Kendall’s Tau Distance

• For a permutation  an adjacent transposition is
the local exchange of two adjacent elements

• For ,π∊Sm, dτ(,π) is the Kendall’s tau distance
between  and π
= Number of adjacent transpositions to change  to be π
 =2413 and π=2314
 2413

 dτ(,π) = 3

It is called also the bubble-sort distance
The Kendall’s tau distance is the number of

pairs that do not agree in their order

 2143  2134  2314

19

Kendall’s Tau Distance

• Lemma: Kendall’s tau distance induces a metric on Sn

• The Kendall’s tau distance is the number of pairs that
do not agree in their order

• For a permutation , Wτ() = {(i,j) | i<j, -1(i) > -1(i) }

• Lemma: dτ(,π) = |Wτ()\Wτ(π)| + |Wτ(π)\Wτ()|

• dτ(,id) = |Wτ()|

• The maximum Kendall’s tau distance is n(n-1)/2

20

ECCs for the Kendall’s Tau Distance

• Goal: Construct codes correcting a single error

• Assume k or k+1 is prime

• Encode a permutation in Sk to a permutation in Sk+2

• A code over Sk+2 with k! codewords
– s=(s1,…sk) ϵ Sk is the information permutation

– set the locations of k+1ϵ Zk+1 and k+2ϵ Zk+2 to be
loc(k+1) = Σ1

k(2i-1)si (mod m)
loc(k+2) = Σ1

k(2i-1)2si(mod m)
m=k if k is prime and m=k+1 is k+1 is prime

• Ex: k=7, s=(7613245)
loc(8) = 17+36+51+73+92+114+135 = 3 (mod 7)
loc(9) = 12

7+32
6+52

1+72
3+92

2+112
4+132

5 = 2 (mod 7)
E(s) = (769183245)

21

ECCs for the Kendall’s Tau Distance

• A code over Sk+2 with k! codewords
– s=(s1,…sk) ϵ Sk is the information permutation

– set the locations of k+1ϵ Zk+1 and k+2ϵ Zk+2 to be
loc(k+1) = Σ1

k(2i-1)si (mod m)
loc(k+2) = Σ1

k(2i-1)2si(mod m)
m=k if k is prime and m=k+1 is k+1 is prime

• Ex: k=3
 123 => 15423
 132 => 13542
 213 => 21543
 231 => 52431
 312 => 34512
 321 => 35241

22

ECCs for the Kendall’s Tau Distance

• A code over Sk+2 with k! codewords
– s=(s1,…sk) ϵ Sk is the information permutation

– set the locations of k+1ϵ Zk+1 and k+2ϵ Zk+2 to be
loc(k+1) = Σ1

k(2i-1)si (mod m)
loc(k+2) = Σ1

k(2i-1)2si(mod m)

• Theorem: This code can correct a single error.

• Proof (partially): Enough to show that the Kendall’s tau
distance between every two codewords is at least 3
– s=(s1,…sk) ϵ Sk, u=E(s)

– t=(t1,…tk) ϵ Sk, v=E(t)

– If dτ(s,t)≥3 then dτ(u,v)≥3

– If dτ(s,t)=1, write t=(s1,…si+1,si…sk), let δ = si+1-si,

locs(k+1)-loct(k+1)=(2i-1)si+(2i+1)si+1–(2i-1)si+1-(2i+1)si=2si+1-2si =2δ(mod k)
thus, they are not positioned in the same location. 23

