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• Array of cells, made of floating gate transistors 
─ Each cell can store q different levels 

─ Today, q typically ranges between 2 and 16 

─ The levels are represented by the number of electrons  

─ The cell’s level is increased by pulsing electrons 
─ To reduce a cell level, all cells in its containing block 

must first be reset to level 0 
  A VERY EXPENSIVE OPERATION 

Rewriting Codes 
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Write-Once Memories (WOM) 

• Introduced by Rivest and Shamir, “How to reuse a 
write-once memory”, 1982 

• The memory elements represent  
bits (2 levels) and are irreversibly                                 
programmed from ‘0’ to ‘1’ 

 Q: How many cells are required to write 100 
bits twice?  

 P1: Is it possible to do better…? 
 P2: How many cells to write k bits twice? 
 P3: How many cells to write k bits t times? 
 P3’: What is the total number of bits that is 

possible to write in n cells in t writes? 

1st  
Write 

2nd  
Write 
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Binary WOM Codes  

•  k1,…,kt:the number of bits on each write 
– n cells and t writes  

• The sum-rate of the WOM code is  

  R = (Σ1
t ki)/n 

– Rivest Shamir:   R = (2+2)/3 = 4/3 

• There are two cases  
– The individual rates on each write must all be the same: 

fixed-rate 

– The individual rates are allowed to be different: 
unrestricted-rate 
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The Capacity of WOM Codes 

• The Capacity Region for two writes 
   C2-WOM={(R1,R2)|∃p∊[0,0.5],R1≤h(p), R2≤1-p} 
 h(p) – the entropy function h(p) = -plog(p)-(1-p)log(1-p) 

– p – the prob to program a cell on the 1st write, thus R1 ≤ h(p) 
– After the first write, 1-p out of the cells aren’t programmed, 

thus R2 ≤ 1-p 

• The maximum achievable sum-rate is 
  maxp∊[0,0.5]{h(p)+(1-p)} = log3  

     achieved for p=1/3: 
 R1 = h(1/3) = log(3)-2/3 
 R2 = 1-1/3 = 2/3 
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WOM Codes Constructions 
• Rivest and Shamir ‘82 

– [3,2; 4,4] (R=1.33); [7,3; 8,8,8] (R=1.28); [7,5; 4,4,4,4,4] (R=1.42); [7,2; 
26,26] (R=1.34)  

– Tabular WOM-codes 

– “Linear” WOM-codes 

– David Klaner: [5,3; 5,5,5] (R=1.39)  

– David Leavitt: [4,4; 7,7,7,7] (R=1.60) 

– James Saxe: [n,n/2-1; n/2,n/2-1,n/2-2,…,2] (R≈0.5*log n), [12,3; 65,81,64] 
(R=1.53) 

• Merkx ‘84 – WOM codes constructed with Projective Geometries  
– [4,4;7,7,7,7] (R=1.60), [31,10; 31,31,31,31,31,31,31,31,31,31] (R=1.598) 

– [7,4; 8,7,8,8] (R=1.69), [7,4; 8,7,11,8] (R=1.75) 

– [8,4; 8,14,11,8] (R=1.66), [7,8; 16,16,16,16, 16,16,16,16] (R=1.75) 

• Wu and Jiang ‘09 - Position modulation code for WOM codes 
– [172,5; 256, 256,256,256,256] (R=1.63), [196,6; 256,256,256,256,256,256] (R=1.71),                           

[238,8; 256,256,256,256,256,256,256,256] (R=1.88),  
[258,9; 256,256,256,256,256,256,256,256,256] (R=1.95),  
[278,10; 256,256,256,256,256,256,256,256,256,256] (R=2.01) 
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The Coset Coding Scheme 

• Cohen, Godlewski, and Merkx ‘86 – The coset coding scheme 

– Use Error Correcting Codes (ECC) in order to construct WOM-codes 

– Let C[n,n-r] be an ECC with parity check matrix H of size r×n 

– Write r bits: Given a syndrome s of r bits, find a length-n vector e 
such that H⋅eT = s 

– Use ECC’s that guarantee on successive writes to find vectors that 
do not overlap with the previously programmed cells 

– The goal is to find a vector e of minimum weight such that only 0s 
flip to 1s 
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The Coset Coding Scheme 

• C[n,n-r] is an ECC with an r×n parity check matrix H 

• Write r bits: Given a syndrome s of r bits, find a length-n 
vector e such that H⋅eT = s 

• Example: H is aparity check matrix of a Hamming code 
– s=100,  v1 = 0000100: c = 0000100  

– s=000, v2 = 1001000: c = 1001100  

– s=111,   v3 = 0100010: c = 1101110 

– s=010, …  can’t write! 

• This matrix gives a [7,3:8,8,8] WOM code 
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Binary Two-Write WOM-Codes 

• C[n,n-r] is a linear code w/ parity check matrix H of size r×n 

• For a vector v ∊ {0,1}n, Hv is the matrix H with 0’s in the 
columns that correspond to the positions of the 1’s in v 

v1 = (0 1 0 1 1 0 0) 

9 



Binary Two-Write WOM-Codes 
• First Write: program only vectors v such that rank(Hv) = r  

  VC = { v ∊ {0,1}
n  | rank(Hv) = r} 

– For H we get |VC| = 92 - we can write 92 messages 
– Assume we write v1 = 0 1 0 1 1 0 0 

 

v1 = (0 1 0 1 1 0 0) 
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Binary Two-Write WOM-Codes 
• First Write: program only vectors v such that rank(Hv) = r,  

  VC = { v ∊ {0,1}
n  | rank(Hv) = r} 

• Second Write Encoding: 
 
 
 
 
 

 
• Second Write Decoding: Multiply the received word by H: 
   H⋅(v1 + v2) = H⋅v1 + H⋅v2 = s1+ (s1 + s2) = s2 

v1 = (0 1 0 1 1 0 0) 

1. Write a vector s2 of r bits 
2. Calculate s1 = H⋅v1 
3. Find v2 such that Hv1

⋅v2 = s1+s2 
a 

4.  v2 exists since rank(Hv1
) = r 

a 

5. Write v1+v2 to memory  

1.  s2 = 001 
2.  s1 = H⋅v1 = 010 
3.  Hv1

⋅v2 = s1+s2 = 011 
a 

4.  v2 = 0 0 0 0 0 1 1  
5.  v1+v2 = 0 1 0 1 1 1 1 
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Example Summary 
• Let H be the parity check matrix  
 of the [7,4] Hamming code 
• First write: program only vectors v such that rank(Hv) = 3 

   VC =  { v ϵ {0,1}
n  | rank(Hv) = 3} 

– For H we get |VC| = 92 - we can write 92 messages 
– Assume we write v1 = 0 1 0 1 1 0 0 
– Write 0’s in the columns of H  

      corresponding to 1’s in v1: Hv1 d 

• Second write: write r = 3 bits, for example: s2 = 0 0 1 
– Calculate s1 = H⋅v1 = 0 1 0 
– Solve: find a vector v2 such that Hv1

⋅v2 = s1 + s2 = 0 1 1 
d 

– Choose v2 = 0 0 0 0 0 1 1  
– Finally, write v1 + v2 = 0 1 0 1 1 1 1 
– Decoding: 

1 1 1 0 1 0 0 
1 0 1 1 0 1 0 
1 1 0 1 0 0 1 

H =  

    
 
 
  
   1 0 1 0 0 0 0 

   Hv1 =  1 0 1 0 0 1 0 
     

  
    1 0 0 0 0 0 1 

1 1 1 0 1 0 0 
1 0 1 1 0 1 0 
1 1 0 1 0 0 1 

. [0 1 0 1 1 1 1]T = [0 0 1] 
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Sum-rate Results 

• The construction works for any linear code C 
• For any C[n,n-r] with parity check matrix H,      

    VC =  { v ∊ {0,1}
n  | rank(Hv) = r} 

• The rate of the first write is:        
   R1(C) = (log2|VC|)/n 

• The rate of the second write is: R2(C) = r/n 
• Thus, the sum-rate is: R(C) = (log2|VC| + r)/n 
• In the last example:  

– R1= log(92)/7=6.52/7=0.93, R2=3/7=0.42, R=1.35 

• Goal: Choose a code C with parity check matrix 
H that maximizes the sum-rate 
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Capacity Region and Achievable 
Rates of Two-Write WOM codes 
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Relative Vs. Absolute Values 

0 1 

Less errors 

More retention 

Jiang, Mateescu, Schwartz, Bruck,  

“Rank modulation for Flash Memories”, 2008 
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The New Paradigm  
Rank Modulation 

 
Absolute values   Relative values 

 

 

Single cell   Multiple cells 

 

 

Physical cell    Logical cell 
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Rank Modulation 

3 

2 

1 

4 

1 2 3 4 

Ordered set of n cells 

 

Assume discrete levels 

 

Relative levels define a permutation 

 

Basic operation: push-to-the-top 

Overshoot is not a concern 
 
Writing is much faster 
 
Increased reliability (data retention) 
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3  2  1  4 

2  3  1  4 

3     2    4    1 
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 2134  2143 

Kendall’s Tau Distance 

• For a permutation  an adjacent transposition is 
the local exchange of two adjacent elements 

• For ,π∊Sm, dτ(,π) is the Kendall’s tau distance 
between  and π 
= Number of adjacent transpositions to change  to be π 
 =2413 and π=2314 
 2413 

   dτ(,π) = 3 
 
It is called also the bubble-sort distance 
The Kendall’s tau distance is the number of  

pairs that do not agree in their order 

 2143  2134  2314 
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Kendall’s Tau Distance 

• Lemma: Kendall’s tau distance induces a metric on Sn 

• The Kendall’s tau distance is the number of pairs that 
do not agree in their order 

• For a permutation , Wτ() = {(i,j) | i<j, -1(i) > -1(i) } 

• Lemma: dτ(,π) = |Wτ()\Wτ(π)| + |Wτ(π)\Wτ()| 

• dτ(,id) = |Wτ()| 

• The maximum Kendall’s tau distance is n(n-1)/2 
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ECCs for the Kendall’s Tau Distance 

• Goal: Construct codes correcting a single error 

• Assume k or k+1 is prime 

• Encode a permutation in Sk to a permutation in Sk+2 

• A code over Sk+2 with k! codewords 
– s=(s1,…sk) ϵ Sk is the information permutation 

– set the locations of k+1ϵ Zk+1 and k+2ϵ Zk+2 to be  
loc(k+1) = Σ1

k(2i-1)si (mod m) 
loc(k+2) = Σ1

k(2i-1)2si(mod m) 
m=k if k is prime and m=k+1 is k+1 is prime 

• Ex: k=7, s=(7613245) 
loc(8) = 17+36+51+73+92+114+135 = 3 (mod 7) 
loc(9) = 12

7+32
6+52

1+72
3+92

2+112
4+132

5 = 2 (mod 7) 
E(s) = (769183245) 
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ECCs for the Kendall’s Tau Distance 

• A code over Sk+2 with k! codewords 
– s=(s1,…sk) ϵ Sk is the information permutation 

– set the locations of k+1ϵ Zk+1 and k+2ϵ Zk+2 to be  
loc(k+1) = Σ1

k(2i-1)si (mod m) 
loc(k+2) = Σ1

k(2i-1)2si(mod m) 
m=k if k is prime and m=k+1 is k+1 is prime 

• Ex: k=3 
 123 => 15423 
 132 => 13542 
 213 => 21543 
 231 => 52431 
 312 => 34512 
 321 => 35241 
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ECCs for the Kendall’s Tau Distance 

• A code over Sk+2 with k! codewords 
– s=(s1,…sk) ϵ Sk is the information permutation 

– set the locations of k+1ϵ Zk+1 and k+2ϵ Zk+2 to be  
loc(k+1) = Σ1

k(2i-1)si (mod m) 
loc(k+2) = Σ1

k(2i-1)2si(mod m) 

• Theorem: This code can correct a single error. 

• Proof (partially): Enough to show that the Kendall’s tau 
distance between every two codewords is at least 3 
– s=(s1,…sk) ϵ Sk, u=E(s) 

– t=(t1,…tk) ϵ Sk, v=E(t) 

– If dτ(s,t)≥3 then dτ(u,v)≥3 

– If dτ(s,t)=1, write t=(s1,…si+1,si…sk), let δ = si+1-si, 

locs(k+1)-loct(k+1)=(2i-1)si+(2i+1)si+1–(2i-1)si+1-(2i+1)si=2si+1-2si =2δ(mod k) 
thus, they are not positioned in the same location. 23 


