048704/236803

Seminar on Coding for
Non-Volatile Memories



Rewriting Codes

Array of cells, made of floating gate transistors
— Each cell can store q different levels

— Today, q typically ranges between 2 and 16

— The levels are represented by the number of electrons
— The cell’ s level is increased by pulsing electrons

— To reduce a cell level, all cells in its containing block

must first be reset to level O
A VERY EXPENSIVE OPERATION
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Write-Once Memories (WOM)

* Introduced by Rivest and Shamir, “ How tfo reuse a

write-once memory”, 1982

« The memory elements represent

bits (2 levels) and are irreversibly

programmed from ‘0" to ‘1’

Q: How many cells are required to write 100

bits twice?

P1: Is it possible to do better..?

P2: How many cells to write k bits twice?
P3: How many cells to write k bits t tfimes?

P3": What is the total number of bits that is

possible to write in n cells in t writes?

Bits Value | 15t Write 2" Write
00 000 111
01 001 110
10 010 101
11 100 011
1st 2nd

NCD e




Binary WOM Codes

* ki,..,kiithe number of bits on each write
— n cells and t writes

 The sum-rate of the WOM code is
R =(Z;"k)/n
— Rivest Shamir: R =(2+2)/3=4/3

 There are two cases

— The individual rates on each write must all be the same:
fixed-rate

— The individual rates are allowed to be different:
unrestricted-rate



The Capacity of WOM Codes

» The Capacity Region for two writes

Co.wom={(R;,R,)|3pe[0,0.5],R; <h(p), R,<1-p}

h(p) - the entropy function h(p) = -plog(p)-(1-p)log(1-p)
— p - the prob to program a cell on the 15t write, thus R; < h(p)

— After the first write, 1-p out of the cells aren't programmed,
ThUSR2<1p The Capac ’rngf‘rwwf

* The maximum achievable sum- ra’r -
MaX,e0,0. sth(p)+(1-p)}=

achieved for p=1/3: o N\
R, = h(1/3) = log(3)-2/3 """
R,=1-1/3=2/3 e o o e
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WOM Codes Constructions

Rivest and Shamir '82

~ [3,2: 4,4] (R=1.33); [7.3: 8,8,8] (R=1.28); [7.5: 4,4,4,4,4] (R=1.42); [7.2;
26,26] (R=1.34)

— Tabular WOM-codes

— “Linear” WOM-codes

— David Klaner: [6,3; 5,5,5] (R=1.39)

— David Leavitt: [4,4; 7,7,7,7] (R=1.60)

— James Saxe: [n,n/2-1; n/2,n/2-1,n/2-2,..,2] (R~0.5*log n), [12,3; 65,81,64]
(R=1.53)

Merkx ‘84 - WOM codes constructed with Projective Geometries

~ [4.4:7,7.7.7] (R=1.60), [31,10; 31,31,31,31,31,31,31,31,31,31] (R=1.598)

- [7.4; 8,7,8,8] (R=1.69), [7.4; 8,7,11,8] (R=1.75)

- [8.4; 8,14,11,8] (R=1.66), [7,8: 16,16,16,16, 16,16,16,16] (R=1.75)

Wu and Jiang ‘09 - Position modulation code for WOM codes

— [172,5; 256, 256,256,256 256] (R=1.63), [196,6; 256,256,256 256 256 256] (R=1.71),
[238,8; 256,256,256 256 256 256 256 256] (R=1.88),
[258,9; 256,256,256 256 256 256 256 256 256] (R=1.95),
[278,10; 256,256, 256, 256 256 256 256 256 256 256] (R=2.01)



The Coset Coding Scheme

« Cohen, Godlewski, and Merkx ‘86 - The coset coding scheme
— Use Error Correcting Codes (ECC) in order to construct WOM-codes
— Let C[n,n-r] be an ECC with parity check matrix H of size rxn

— Write r bits: Given a syndrome s of r bits, find a length-n vector e
such that H-e™ = s

— Use ECC’ s that guarantee on successive writes to find vectors that
do not overlap with the previously programmed cells

— The goal is to find a vector e of minimum weight such that only Os
flip to 1s



The Coset Coding Scheme

C[n,n-r] is an ECC with an rxn parity check matrix H

Write r bits: Given a syndrome s of r bits, find a length-n
vector e such that H-e™ = s

Example: H is aparity check matrix of a Hammmg code

~ 52100, v, = 0000100 ¢ = 0000100
- 52000, v; = 1001000: ¢ = 1001100, _ 131?3?8
~ s=111, v, = 0100010: ¢ = 1101110 3

1101001
— s=010, ... ® can't writel

This matrix gives a [7,3:8,8,8] WOM code



Binary Two-Write WOM-Codes

* C[n,n-r] is a linear code w/ parity check matrix H of size rxn
« Foravectorv e {0,1}" H, is the matrix H with O's in the

columns that correspond to the positions of the 1's inv

v,=(0101100) H =

—
—_0 =
O -
—_ -0
oMol
OO0
ol eNe

1010000

H,=|1010010
1000001



Binary Two-Write WOM-Codes

 First Write: program onI?l vectors v such that rank(H,) = r
V.= v e {0, | rank(H) = r)
— For Hwe get |V.| = 92 - we can write 92 messages
— Assume wewritev; =0101100

v,=(0101100) 4

"
—
—_0 =
O -
—_ -0
oMol
OO0
ol eNe

1010000

H,=]11010010
1000001
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Binary Two-Write WOM-Codes

* First Write: pr'o{gr'am onlf} vectors v such that rank(H,) = r,

1.
2
3
4
5

Vo ={ve{01} | rank(H,) = r}

Second Write Encoding:
Write a vector s, of r bits 1. s,=001
. Calculate s; = H-v, 2. s;=Hwv, =010
. Find v, such ’rh 3. H,,v,=s;+s, =011
.V, exists since rank(H,,) = r 4. v,=0000011
. Write v,+v, o memory 5. vi+v, =0101111

+ Second Write Decoding: Multiply the received word by H:

1110100)] 100
v,=(01(1011010f{[0101111)7=[001] 010
_1101001_ _____ 1 00 1

L J L _

H-(vi + v3) = Hvy + 51"' S2




— For Hwe get |V.| = 92 - we can write 92 messages
— Assumewewritev; =0101100 10
— Write O’ s in the columns of H H,= |10
10
2 -

Example Summary

111

« Let H be the parity check matrix H=101
of the [7,4] Hamming code 110

* First write: program only vectors v such that rank(H,)

Vo= {ve{0,1} | rank(H,) = 3}

corresponding to 1" s inv,: H

- Second write: write r = 3 bits, for example: s
— Calculates; = Hv; =010

Vi

Solve: find a vector v, such that H, v, =s; +s, =0 1 1

Choosev, = 000001 1
Finally, writev, +v, =0101111

Decoding:

b fd b

110100]
011010
101001,

[0101111]7=[00 1]



Sum-rate Results

The construction works for any linear code C
For any C[n,n-r] with parity check matrix H,
Vo= {ve{01} | rank(H,) = r}

The rate of the first write is:

R;(C) = (log,|Vcl)/n
The rate of the second write is: R,(C) = r/n
Thus, the sum-rate is: R(C) = (log,|V.| + r)/n
In the last example:
— R;=l0g(92)/7-6.52/7=-0.93, R,=3/7=0.42, R=1.35

Goal: Choose a code C with parity check matrix
H that maximizes the sum-rate
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Capacity Region and Achievable
Rates of Two-Write WOM codes

1 —— Capacity Rd
——Achieved -7
09 [n,2;n+ 1,271 " Computer Séarch |
Wu's Construction .
“‘“a.__h‘_ 7’
08k e e -

1

.
[16,2; 2!, 2''] Reed-Muller [16, 5, 8] (Shortened}<

/

0.7

061 2, 2; 4, 4] Rivest and Shamir
o e
0.5- [16,2; 5065, 2''] ReedMuller [16, 58] H-
04} ol - i
[10,Z; 176, 76] Wu's WOM-code \
’ L.
0.3} o - ]
]23,2; 3300179, 2'?] Golay code [23,11,8
0.2} Il
R [24,2; 7898574, 21?] Golay code [24, 12, 8]
01 -7 _
0 // I I 1 I 1 I I I I &
0 0.1 02 03 04 0.5 0.6 0.7 0.8 09 1



Relative Vs. Absolute Values

Less errors

More retention

)

Jiang, Mateescu, Schwartz, Bruck,
"Rank modulation for Flash Memories”, 2008



The New Paradigm
Rank Modulation

Absolute values -> Relative values
Single cell > Multiple cells

Physical cell > Logical cell

16



Rank Modulation

Ordered set of n cells

H

Assume discrete levels

2]

Relative levels define a permutation

M

Basic operation: push-to-the-top

Overshoot is not a concern

Writing is much faster

Increased reliability (data retention)

17



3<214

31 4
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Kendall's Tau Distance

* For a permutation ¢ an adjacent transposition is
the local exchange of two adjacent elements

* For o,neS, , d (oc,n) is the Kendall's tau distance
between ¢ and =
= Number of adjacent franspositions to change o fo be =

0=2413 and n=2314
2413 — 2143 — 2134 - 2314

d(oc,mn) = 3

It is called also the bubble-sort distance 2 1 4

The Kendall's tau distance is the number of 53 ; 4
pairs that do not agree in their order

19



Kendall's Tau Distance

Lemma: Kendall's tau distance induces a metricon S,

The Kendall's tau distance is the number of pairs that
do not agree in their order

For a permutation o, W.(c) = {(i,j) | i<j, o7'(i) > 71(i) }
Lemma: d (o, 1) = |W.(c)\W.(7)| + |W_(T)\W_ ()|
d.(c,id) = [W(c)|

The maximum Kendall's tau distance is n(n-1)/2

20



ECCs for the Kendall's Tau Distance

Goal: Construct codes correcting a single error
Assume k or k+1 is prime
Encode a permutation in S, o a permutation in S,

A code over S,,, with k!l codewords
— s=(s4,...5)) € S is the information permutation

— set the locations of k+le Z,,; and k+2¢ Z,,, to be
loc(k+1) = Z,%(2i-1)s; (mod m)
loc(k+2) = Z¥(2i-1)2s.(mod m)
m=k if k is prime and m=k+1 is k+1 is prime

« Ex: k=7, s=(7613245)

loc(8) = 167+3¢6+5¢1+7¢3+9¢2+11¢4+13¢5 = 3 (mod 7)
loc(9) = 1267+32e6+5201+7203+92e2+112¢4+132¢5 = 2 (mod 7)
E(s) = (769183245)



ECCs for the Kendall's Tau Distance

* A code over S,,, with kl codewords
— s=(S4,...5)) € Sy is the information permutation
— set the locations of k+le Z, ., and k+2¢ Z,,, to be
loc(k+1) = Z,%(2i-1)s; (mod m)
loc(k+2) = Z¥(2i-1)2s,(mod m)
m=Kk if k is prime and m=k+1 is k+1 is prime
« Ex: k=3
123 => 15423
132 => 13542
213 => 21543
231 =>52431
312 => 34512
321 => 35241



ECCs for the Kendall's Tau Distance

* A code over S,,, with kl codewords

— §=(S4,...5)) € S is the information permutation

— set the locations of k+le Z,.; and k+2¢ Z,,, to be
loc(k+1) = Z,X(2i-1)s; (mod m)
loc(k+2) = Z¥(2i-1)2s,(mod m)
« Theorem: This code can correct a single error.
* Proof (partially): Enough to show that the Kendall's tau
distance between every two codewords is at least 3
— s=(sy,...5)) € Sy, u=E(s)
— +=(t,.. 1) € Sy, v=E(1)
— If d.(s,1)>3 then d (u,v)23
— If d.(s,t)=1, write t=(s;,..5,1,5;...5)), let & = s,,4-s;,

locy(k+1)-locy(k+1)=(2i-1)s+(2i+1)s,,,~(2i-1)s;,4-(2i+1)s,=25,,,-25; =28(mod k)
thus, they are not positioned in the same location.



