

Information in Storage Devices 049063 – EE Department, Technion

LECTURE 2: HDD ACCESS

A Tale of Two Media Stars

- Has been around forever
- Improves, but looks the same
- Predictable performance

- Fast to respond
- Heavily hyped
 High media exposure
- You know can do wonders
 - But most encounters less exciting

A Tale of Two Media Stars

- Has been around forever
- Improves, but looks the same
- Predictable performance

- Fast to respond
- Heavily hyped
 High media exposure
- You know can do wonders
 - But most encounters less exciting

Hard-Disk Drive (HDD)

• Revolving disks, magnetic media

- Invented 1956 (IBM)
 - Size: two refrigerators
 - # disks: 50
 - Capacity: 4MB
- Capacity today: 8TB
- Scaling with **media** and **head** technologies

HDD Access

1D view

HDD Access

• 2D view

HDD Access

• 3D view

PBA = (Cylinder, Head, Sector) – CHS address

Access Time

Random Access

Definition:

A device is called **random access** if any sequence of requests Req_1 , Req_2 ,...

is <u>allowed</u>, and all such sequences exhibit a <u>similar</u> <u>response</u> behavior.

HDD Read/Write ordering

• HDD R/W switch time

Seek Times

$$T(c \to c') = \tau \frac{|c - c'|}{\#cyls - 1}$$

Normalized cylinder addresses:

$$\gamma = \frac{c}{\# cyls - 1}$$
 $\gamma' = \frac{c'}{\# cyls - 1}$

$$T(c \rightarrow c') = \tau |\gamma - \gamma'|$$

$$\uparrow$$
full-seek time

Seek-Time Distribution

• Max

- all possible $\gamma' \max[T(\gamma)] = \max[\tau\gamma, \tau(1-\gamma)]$ - all possible $\gamma, \gamma' \max[T] = \tau$

• What is the expected seek time?

 $\mathbf{E}[\mathbf{T}] = ?$

Expectation given origin γ

• Expectation given γ (uniform γ')

$$\mathbf{E}[\mathbf{T}(\boldsymbol{\gamma})] = \tau \left[\gamma^2 - \gamma + \frac{1}{2} \right]$$

Overall Expectation

• Expectation (uniform γ, γ')

 $E[T] = E \{E[T(\gamma)]\} = \frac{\tau}{3}$

Access Time

serpentine mode

cylinder mode

Access Time

Rotational Latency

$$T(S \to S') = T_{rev} \frac{S - S'}{\#sectors/rev}$$

Max rotational latency

 $\max[\mathbf{T}] = T_{rev}$

• Expectation

$$\mathrm{E}[\mathrm{T}] = \frac{T_{rev}}{2}$$

Command Queueing

- HDD manages command queues
- Allowed out-of-order execution

current

reqs in queue

 $\mathbf{E}[T_N] = E[\min_{i \in 1 \dots N} T[\mathbf{S} \to S_j]] = ?$

• Optimal choice of next:

 $S \to S_i$: $i = \arg \min_{j \in 1, ..., N} T[S \to S_j]$

Expected latency with N-queue

Conventional Recording

Shingled Magnetic Recording

track layout for shingled-recording

Shingled Recording

Shingled Recording – No Random Write

Performance with Shingling

Shingled Drive Tradeoff

