

Information in Storage Devices

049063 – EE Department, Technion

LECTURE 1: INTRODUCTION

Structure of Storage Devices

Storage Features

What do we expect from our storage device?

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.

Storage Features

What do we expect from our storage device?

- 1. Density [bits/in²], [bits/\$]
- 2. Access speed [IO/sec], [MB/sec]
 - e.g 4KB Read IOPS
- 3. Reliability
 - MTBF [hours] mean time between failures
 - MTTDL [hours] mean time to data loss
- 4. Retention [years] (powered down)
- 5. Endurance [write cycles], [prog-erase cycles]
- 6. Fixed cost [\$]

Type of Storage Devices

- 1.
- 2.
- 3.
- 4.
- 5

Type of Storage Devices

- 1. Hard-Disk Drive
 - revolving disks, magnetic media
- 2. Tape
 - spinning tape reels, magnetic media
- 3. Solid-State Drive
 - silicon-based cells in 2D/3D matrix
- 4. RAID redundant array of independent disks
 - array of disks, consolidated by controller
- 5. Distributed Storage
 - multi-node/multi-site storage system

How does the device know which data I want?

Addresses!

Content

addressed

Location

addressed

Location-Addressed Storage

Storage Units

- 1. Logical Unit (host-side, e.g. file-system block)
- 2. Physical Unit (e.g. HDD sector, flash page)

Case 1: Logical>Physical

Storage Units

- 1. Logical Unit (host-side, e.g. file-system block)
- 2. Physical Unit (e.g. HDD sector, flash page)

Data Storage = Representation + Placement

Data Representation

- User bits
 ← Multilevel cells
- Error-correcting codes
- Multi-write codes
- Compression

Data Placement

- Flash Translation Layer
- Access optimization

1. Data Placement

Example: trivial mapping

1. Data Placement

Example: defects

LBA
$$\longrightarrow$$
 mapping \longrightarrow PBA: $\sum_{l=1}^{PBA} \Delta[l] = LBA$

$$\Delta[l] = \begin{cases} 0 & \text{if } PBA_l \text{ defective} \\ 1 & \text{otherwise} \end{cases}$$

Static vs. Dynamic Placement

Static placement (memoryless):

<u>Dynamic placement</u> (workload dependent):

2. Data Representation — Media side

Example: trivial mapping

2. Data Representation — Media side

Example: multi-level flash

2. Data Representation—

Example: error-correcting codes

A new game: Big Data

Wisdom storage

- Machine learning (trained model)
 - Need to know the question in advance
- Lossless compression (fully invertible)
 - Retain all wisdoms
- Differential wisdom (knowledgeable reader)
 - Deduplication
 - Compression with side information