Welcome to 048704/236803
 Seminar on Coding for Non-Volatile Memories

1956: IBM RAMAC
5 Megabyte Hard Drive

A 2014 Terabyte Drive

Above: An IBM Model 350 Disk File being delivered. Yes, that's ONE hard disk drive unit.

Some of the main goals in designing a computer storage:

Price
Capacity (size)
Endurance
Speed
Power Consumption

The Evolution of HDD

Disk Drive Basics

Memories Today

- RAM memories, DRAM, SRAM

Volatile

 Memories- Hard disk
- Tape
- Floppy disk
- Optical disc: CD, DVD, BlueRay

Non-Volatile

- Punch cards
- Flash memories
- Phase change memories
- Memristors/STTRAM/MRAM

Fas \dagger

Low Power

Reliable

~105 P/E Cylces

Flash Memory Cell

Multi-Level Flash Memory Model

- Array of cells, made of floating gate transistors
- Each cell can store q different values.
- Today, q typically ranges between 2 and 16.

Multi-Level Flash Memory Model

- Array of cells, made of floating gate transistors
- Each cell can store q different values.
- Today, q typically ranges between 2 and 16.
- The cell's level is increased by pulsing electrons.
- Reducing a cell level requires resetting all the
 cells in its containing block to level 0-A VERY EXPENSIVE OPERATION

Flash Memory Constraints

- The lifetime/endurance of flash memories corresponds to the number of times the blocks can be erased and still store reliable information
- Usually a block can tolerate $\sim 10^{4}-10^{5}$ erasures before it becomes unreliable
- The Goal: Representing the data efficiently such that block erasures are postponed as much as possible - Rewriting codes

Store 1 bit
8 times

Store 4 bits once

Rewrite codes significantly reduce the number of block erasures

Store 3
bits once

Store 1 bit 16 times

Write-Once Memories (WOM)

- Introduced by Rivest and Shamir, "How to reuse a write-once memory", 1982
- The memory elements represent bits (2 levels) and are irreversibly programmed from '0' to ' 1 '

Bits Value	$1^{\text {st }}$ Write	$2^{\text {nd }}$ Write
$\mathbf{0 0}$	$\mathbf{0 0 0}$	111
$\mathbf{0 1}$	001	110
10	010	101
11	100	011

Write-Once Memories (WOM)

- Examples:

- The problem:

What is the total number of bits that is possible to write in n cells in \dagger writes?

Bits Value	$1^{\text {st }}$ Write	$2^{\text {nd }}$ Write
$\mathbf{0 0}$	$\mathbf{0 0 0}$	111
$\mathbf{0 1}$	$\mathbf{0 0 1}$	110
10	010	101
11	100	011

Binary WOM-Codes

- An $\left[n, t: M_{1}, \ldots, M_{+}\right] t$-write WOM-code has n cells and guarantees any t writes of alphabet size M_{1}, \ldots, M_{+}by programming cells from 0 to 1
- Example: the Rivest-Shamir code is
- The sum-rate of the WOM-code is

$$
R=\left(\Sigma_{1}{ }^{\dagger} \log M_{i}\right) / n
$$

- Example: the Rivest-Shamir sum-rate is
- Remark: There are two cases:
- Individual rates on each write must all be the same (fixed-rate)
- Individual rates are allowed to be different (unrestricted-rate)

WOM Capacity

- Capacity region (Heegard 1986, Fu and Han Vinck 1999)

$$
\begin{aligned}
C_{t-\text { wом }}=\left\{\left(R_{1}, \ldots, R_{+}\right) \mid\right. & R_{1} \leq h\left(p_{1}\right), \\
& R_{2} \leq\left(1-p_{1}\right) h\left(p_{2}\right), \ldots, \\
& R_{t-1} \leq\left(1-p_{1}\right) \cdots\left(1-p_{t-2}\right) h\left(p_{t-1}\right) \\
& \left.R_{t} \leq\left(1-p_{1}\right) \cdots\left(1-p_{t-2}\right)\left(1-p_{t-1}\right)\right\}
\end{aligned}
$$

- Unrestricted-rate: Maximum achievable sum-rate is $\log (\dagger+1)$
- Fixed-rate: There is a recursive formula to calculate the maximum achievable sum-rate
- Example:
- For two writes $C_{2 \text {-wom }}=\left\{\left(R_{1}, R_{2}\right) \mid R_{1} \leq h(p), R_{2} \leq(1-p)\right\}$
- The maximum sum-rate is $\max _{p}\{h(p)+1-p\}=\log 3$
- The max fixed-rate sum-rate is 1.54

WOM Capacity and Achievable Rates

Non-Binary WOM Codes

- Definition: An $\left[n, t: M_{1}, \ldots, M_{t}\right]_{q} t$-write WOM code is a coding scheme that consists of n q-ary cells and guarantees any t writes of alphabet size M_{1}, \ldots, M_{+}only by increasing the cell levels
- The sum-rate of the WOM-code is

$$
R=\left(\Sigma_{i=1}^{\dagger} \log M_{i}\right) / n
$$

WOM Capacity

- The capacity of non-binary WOM-codes was given by Fu and Han Vinck, '99
- The maximal sum-rate using t writes and q-ary cells is

$$
C=\log \binom{t+q-1}{q-1}
$$

- There is no tight upper bound on the sum-rate in case equal amount of information is written on each write

Flash/Floating Codes

- k bits (more generally symbols) are stored using n cells
- A write is a change $0 \rightarrow 1$ or $1 \rightarrow 0$ of one of the k bits
- Definition - Flash Codes: An (n,k, t) Flash Code is a coding scheme that accommodates any sequence of up to t writes of k bits, using $n q$-level cells, in such a way that a block erasure is never required.
- Goal: Given k, n, q, maximize the number of writes t

Flash/Floating Codes

Example: Storing three bits using two 8 -level cells

Bits Diagram

Cells Diagram

Example - Two Bits Construction

- Every cell is filled to the top before moving to the next one
- When the cells coincide, the last cell represents two bits. The cell's residue modulo 4 sets the bits value:

$$
0-(0,0) \quad 1-(0,1) \quad 2-(1,0) \quad 3-(1,1)
$$

- The maximum number of writes (worst case) is $n(q-1)-[(q-1) / 2]$ (optimal) before erasing is required.

Trajectory Codes

- Flash/floating codes suffer from a restricted rewrite model - on each rewrite, only a single bit can be updated
- Trajectory codes extend this model Jiang, Langberg, Schwartz, Bruck, "Universal Rewriting in Constrained Memories", ISIT 09'
- The update transitions are depicted in a graph
- This extended model can fit all type of codes: flash/floating codes, buffer codes, rank modulation, WOM codes

Asymmetric ECC

- Many storage applications, e.g. flash memories, phase-change memories and more, share the following common properties:
- Cells have multiple levels: 0,1,..., q-1
- Errors have an asymmetric behavior

Asymmetric ECC

- Many storage applications, e.g. flash memories, phase-change memories and more, share the following common properties:
- Cells have multiple levels: $0,1, \ldots, q-1$
- Errors have an asymmetric behavior
- If a cell error occurs, then the cell level increases (or decreases) by at most / levels

Asymmetric ECC

- Many storage applications, e.g. flash memories, phase-change memories and more, share the following common properties:
- Cells have multiple levels: 0,1,..., q-1
- Errors have an asymmetric behavior
- If a cell error occurs, then the cell level increases (or decreases) by at most / levels

Asymmetric ECC

- Flash memories
- Cells increase their level during the programming process due to over-shooting
- Cells decrease their level due to data retention
- Errors become more prominent as the device is cycled
- Phase change memories
- The drift in these memories changes the cells' levels in one direction

Asymmetric ECC

Time evolution of programmed resistance distributions of 200 kcells due to drift: (a) as programmed, and (b) $40 \mu \mathrm{~s}$, (c) 1000s, (d) 46,000 s after programming.

Figure from: N. Papandreou, H. Pozidis, T. Mittelholzer, G. F. Close, M. Breitwisch, C. Lam, and E. Eleftheriou, "Drift-Tolerant Multilevel PhaseChange Memory", 3rd IEEE Memory Workshop, May 2011

The Leakage Problem

The Overshooting Problem

Need to erase the whole block

Possible Solution Iterative Programming

Slow...

Relative Vs. Absolute Values

Less errors

More retention

(1)

Jiang, Mateescu, Schwartz, Bruck, "Rank modulation for Flash Memories", 2008

The New Paradigm Rank Modulation

Absolute values $\quad \rightarrow \quad$ Relative values

Single cell $\quad \rightarrow \quad$ Multiple cells

Physical cell $\quad \rightarrow \quad$ Logical cell

Rank Modulation

1

Ordered set of n cells

Assume discrete levels

Relative levels define a permutation

Basic operation: push-to-the-top

Overshoot is not a concern
Writing is much faster
Increased reliability (data retention)

Gray Codes for Rank Modulation

The problem: Is it possible to transition between all permutations?

Find cycle through n! states by push-to-the-top transitions $n=3$

3 cycles

Transition graph, $n=3$

Multiple Cells Permutation

Goal: Guarantee large number of rewrites

Multiple Cells Permutation

Example:

$n=4$ cells

 $q=5$ levels in each cell$$
\begin{array}{ll}
p=3,2,1,4 & c=4,3,2,5 \\
p=1,2,3,4 & c=0,1,2,3 \\
& c=0,0,0,0
\end{array}
$$

$\mathrm{T}=2$ writes

Goal: Guarantee large number of rewrites

Kendall's Tau Distance

- For a permutation σ an adjacent transposition is the local exchange of two adjacent elements
- For $\sigma, \pi \in S_{m}, \mathrm{~d}_{\tau}(\sigma, \pi)$ is the Kendall's tau distance between σ and π
$=$ Number of adjacent transpositions to change σ to be π

$$
\begin{aligned}
& \sigma=2413 \text { and } \pi=2314 \\
& 2 \underline{13} \rightarrow 21 \underline{13} \rightarrow 2 \underline{134} \rightarrow 2314 \\
& \mathrm{~d}_{\mathrm{r}}(\sigma, \pi)=3
\end{aligned}
$$

It is called also the bubble-sort distance The Kendall's tau distance is the number of pairs that do not agree in their order

Other Types of Non-volatile Memories

- Phase Change Memories (PCM)
- STTRAM
- MRAM
- Memristors

Practical Memristors

- 2008 Hewlett Packard

Crossbar Arrays

Sneak Path

- An array A has a sneak path of length $2 k+1$ affecting the (i, j) cell if
- $a_{i j}=0$
- There exist r_{1}, \ldots, r_{k} and c_{1}, \ldots, c_{k} such that

$$
a_{i c_{1}}=a_{r_{1} c_{1}}=a_{r_{1} c_{2}}=\cdots=a_{r k c k}=a_{r k j}=1
$$

- An array A satisfies the sneak-path constraint if it has no sneak paths and then is called a sneak-path free array

