Welcome to 048704/236803 Seminar on Coding for Non-Volatile Memories

1956: IBM RAMAC5 Megabyte Hard Drive

Above: An IBM Model 350 Disk File being delivered. Yes, that's ONE hard disk drive unit.

A 2014 Terabyte Drive

Some of the main goals in designing a computer storage: Price Capacity (size) Endurance Speed **Power Consumption**

The Evolution of HDD

Disk Drive Basics

Memories Today

- RAM memories, DRAM, SRAM
- Hard disk
- Tape
- Floppy disk
- Optical disc: CD, DVD, BlueRay
- Punch cards
- Flash memories
- Phase change memories
- Memristors/STTRAM/MRAM

Non-Volatile Memories

Volatile

Memories

TECHNOLOGIES

inside

Fast Low Power Reliable

~10⁵ P/E Cylces

Flash Memory Cell

Multi-Level Flash Memory Model

- Array of cells, made of floating gate transistors
 - Each cell can store q different values.
 - Today, q typically ranges between 2 and 16.

Multi-Level Flash Memory Model

- Array of cells, made of floating gate transistors
 - Each cell can store q different values.
 - Today, **q** typically ranges between **2** and **16**.
 - The cell's level is increased by pulsing electrons.
 - Reducing a cell level requires resetting all the cells in its containing block to level 0 A VERY
 EXPENSIVE OPERATION

Flash Memory Constraints

- The lifetime/endurance of flash memories corresponds to the number of times the blocks can be erased and still store reliable information
- Usually a block can tolerate ~10⁴-10⁵ erasures before it becomes unreliable
- The Goal: Representing the data efficiently such that block erasures are postponed as much as possible Rewriting codes

Write-Once Memories (WOM)

- Introduced by Rivest and Shamir, "How to reuse a write-once memory", 1982
- The memory elements represent bits (2 levels) and are irreversibly programmed from '0' to '1'

Bits Value	1 st Write	2 nd Write		
00	000	111		
01	001	110		
10	010	101		
11	100	011		

Write-Once Memories (WOM)

• Examples:

data	Memory	data			Bits Value 1 st Write		2 nd Write		
	State		State	00		000	111		
				01		001	110		
				10		010	101		
				11		100	011		
data	Memory State	data	Memory State		1 st 2 ⁿ Write Wri				
				00	00 000 (111) 00 (111) 00 (110) 01				

01

10

010

11(100

The problem:

What is the total number of bits that is possible to write in **n** cells in **t** writes? 110

101

011

01

10

11

Binary WOM-Codes

- An [n,t;M₁,...,M_t] t-write WOM-code has n cells and guarantees any t writes of alphabet size M₁,...,M_t by programming cells from 0 to 1 – Example: the Rivest-Shamir code is
- The sum-rate of the WOM-code is $R = (\Sigma_1^+ \log M_i)/n$
 - Example: the Rivest-Shamir sum-rate is
- **Remark**: There are two cases:
 - Individual rates on each write must all be the same (fixed-rate)
 - Individual rates are allowed to be different (unrestricted-rate)

WOM Capacity

- Capacity region (Heegard 1986, Fu and Han Vinck 1999) $C_{t-WOM} = \{(R_1, ..., R_t) | R_1 \leq h(p_1), R_2 \leq (1-p_1)h(p_2), ..., R_2 \leq (1-p_1)h(p_2), ..., R_{t-1} \leq (1-p_1)\cdots(1-p_{t-2})h(p_{t-1}), R_t \leq (1-p_1)\cdots(1-p_{t-2})(1-p_{t-1})\}$
- Unrestricted-rate: Maximum achievable sum-rate is log(+1)
- Fixed-rate: There is a recursive formula to calculate the maximum achievable sum-rate
- Example:
 - For two writes $C_{2-WOM} = \{(R_1, R_2) | R_1 \leq h(p), R_2 \leq (1-p)\}$
 - The maximum sum-rate is max_p{h(p)+1-p}=log3
 - The max fixed-rate sum-rate is 1.54

Non-Binary WOM Codes

- Definition: An [n,t; M₁,...,M_t]_q t-write WOM code is a coding scheme that consists of n q-ary cells and guarantees any t writes of alphabet size M₁,...,M_t only by increasing the cell levels
- The sum-rate of the WOM-code is $R = (\sum_{i=1}^{t} \log M_i)/n$

WOM Capacity

- The capacity of non-binary WOM-codes was given by Fu and Han Vinck, '99
- The maximal sum-rate using t writes and q-ary cells is

$$C = \log \binom{t+q-1}{q-1}$$

• There is no tight upper bound on the sum-rate in case equal amount of information is written on each write

Flash/Floating Codes

- k bits (more generally symbols) are stored using n cells
- A write is a change $0 \to 1$ or $1 \to 0$ of one of the k bits
- Definition Flash Codes: An (n, k, t), Flash Code is a coding scheme that accommodates <u>any sequence of up to t writes</u> of k bits, using n q-level cells, in such a way that a block erasure is never required.
- Goal: Given k, n, q, maximize the number of writes t

Flash/Floating Codes

Cells Diagram

Example - Two Bits Construction

- Every cell is filled to the top before moving to the next one
- When the cells coincide, the last cell represents two bits. The cell's residue modulo 4 sets the bits value:
 0 - (0,0) 1 - (0,1) 2 - (1,0) 3 - (1,1)
- The maximum number of writes (worst case) is n(q-1) - [(q-1)/2] (optimal) before erasing is required.

Trajectory Codes

- Flash/floating codes suffer from a restricted rewrite model - on each rewrite, only a single bit can be updated
- Trajectory codes extend this model Jiang, Langberg, Schwartz, Bruck, "Universal Rewriting in Constrained Memories", ISIT 09'
- The update transitions are depicted in a graph
- This extended model can fit all type of codes: flash/floating codes, buffer codes, rank modulation, WOM codes

- Many storage applications, e.g. flash memories, phase-change memories and more, share the following common properties:
 - Cells have multiple levels: 0,1,...,q-1
 - Errors have an asymmetric behavior

- Many storage applications, e.g. flash memories, phase-change memories and more, share the following common properties:
 - Cells have multiple levels: 0,1,...,q-1
 - Errors have an asymmetric behavior
 - If a cell error occurs, then the cell level increases (or decreases) by at most / levels

- Many storage applications, e.g. flash memories, phase-change memories and more, share the following common properties:
 - Cells have multiple levels: 0,1,...,q-1
 - Errors have an asymmetric behavior
 - If a cell error occurs, then the cell level increases (or decreases) by at most / levels

- Flash memories
 - Cells increase their level during the programming process due to over-shooting
 - Cells decrease their level due to data retention
 - Errors become more prominent as the device is cycled
- Phase change memories
 - The drift in these memories changes the cells' levels in one direction

Time evolution of programmed resistance distributions of 200 kcells due to drift: (a) as programmed, and (b) $40\mu s$, (c) 1000s, (d) 46,000s after programming.

Figure from: N. Papandreou, H. Pozidis, T. Mittelholzer, G. F. Close, M. Breitwisch, C. Lam, and E. Eleftheriou, "Drift-Tolerant Multilevel Phase-⁹Change Memory", 3rd IEEE Memory Workshop, May 2011

The Leakage Problem

Error!

The Overshooting Problem

Need to erase the whole block

Possible Solution -Iterative Programming

Slow...

Relative Vs. Absolute Values

Less errors More retention

(\mathbf{I})

Jiang, Mateescu, Schwartz, Bruck, "Rank modulation for Flash Memories", 2008

The New Paradigm Rank Modulation

Absolute values \rightarrow Relative values

Single cell \rightarrow Multiple cells

Physical cell \rightarrow Logical cell

Rank Modulation

Ordered set of **n** cells

Assume discrete levels

Relative levels define a permutation

Basic operation: push-to-the-top

Overshoot is not a concern

Writing is much faster

Increased reliability (data retention)

Gray Codes for Rank Modulation

The problem: Is it possible to transition between all permutations?

Find cycle through n! states by push-to-the-top transitions

3

:les

Transition graph, n=3

n=3

3 cycles

3

2

1

Multiple Cells Permutation

Goal: Guarantee large number of rewrites

Multiple Cells Permutation

Example:

- n=4 cells q=5 levels in each cell
- p = 3,2,1,4 c = 4,3,2,5 p = 1,2,3,4 c = 0,1,2,3
 - c = 0,0,0,0

T=2 writes

Goal: Guarantee large number of rewrites

Kendall's Tau Distance

- For a permutation σ an adjacent transposition is the local exchange of two adjacent elements
- For σ, π∈S_m, d_τ(σ, π) is the Kendall's tau distance between σ and π
 - = Number of adjacent transpositions to change σ to be π

 $\sigma = 2413 \text{ and } \pi = 2314$ $2413 \rightarrow 2143 \rightarrow 2134 \rightarrow 2314$ $d_{\tau}(\sigma, \pi) = 3$

It is called also the **bubble-sort** distance The Kendall's tau distance is the number of pairs that do not agree in their order

Other Types of Non-volatile Memories

- Phase Change Memories (PCM)
- STTRAM
- MRAM
- Memristors

Practical Memristors

D.B. Strukov et al, "The missing memristor found," Nature, 2008

Crossbar Arrays

Sneak Path

- An array A has a sneak path of length 2k+1 affecting the (i,j) cell if
 - a_{ij}=0
 - There exist $\mathbf{r}_1, \dots, \mathbf{r}_k$ and $\mathbf{c}_1, \dots, \mathbf{c}_k$ such that $\mathbf{a}_{ic_1} = \mathbf{a}_{r_1c_1} = \mathbf{a}_{r_1c_2} = \dots = \mathbf{a}_{r_kc_k} = \mathbf{a}_{r_kj} = \mathbf{1}$
- An array A satisfies the sneak-path constraint if it has no sneak paths and then is called a sneak-path free array

