
Codes for High Performance Write and Read
Processes in Multi-Level NVMs

Evyatar Hemo and Yuval Cassuto
Department of Electrical Engineering, Technion – Israel Institute of Technology

evyatar@tx.technion.ac.il, ycassuto@ee.technion.ac.il

Abstract— Multi-level memory cells are used in non-volatile
memories in order to increase the storage density. Using multi-
level cells, however, imposes higher read and write latencies lim-
iting high speed applications. In this work we study the tradeoff
between storage density and write/read performance using codes.
The contributions are codes that give high-performance write
and read processes with minimal reduction in storage density.
We describe the codes, give an analytical treatment of their
information rate and speed, and compare them with more basic
access schemes and upper bounds.

I. Introduction

Multi-level non-volatile memories (NVMs) hold great
promise to scale the storage capacity of mass-storage devices
of the present and future. The main impediment of multi-level
memories stems from the steep degradation of the read/write
speed as the number of levels grows. This is because more
levels mean longer processes to accurately set the cell levels
and to measure them with precision upon read.

In order to achieve a viable storage device, the correct
trade-off between storage density and read/write performance
needs to be found. Toward this objective, we here propose and
analyze coding schemes that efficiently balance between the
rate of information storage and the time required to write and
read information onto and from the media. With these codes, a
storage device with a given number of physical levels q will be
able to flexibly choose its encoding schemes to reach desired
write and read speeds, with minimal resulting compromise of
the information rate.

In this paper we propose two codes that optimize write
and read times, while keeping the expended redundancy to
a minimum. In order to do so, the codes constrain the stored
levels within a memory block in a way that is most beneficial
to the write or read processes. Previous schemes like [1],[2]
considered access-optimizing mappings for multi-level cells,
but were more limited as they did not use redundancy. In Sec-
tion II we introduce the first code which is designed for high-
performance write. The second code for high-performance
read is presented in III. In order to analyze the codes, we
also compare them to simpler natural alternatives and to upper
bounds on read performance that are also included in our
contributions. Our results on read-boosting codes build on
our previous work [3] on algorithms for efficient multi-level
threshold read (without coding). The best results of the codes
are achieved when the number of memory cells that can
be written or read in parallel is not much higher than the
number of memory levels. This is, for example, the typical
case for NOR flash memory and for phase-change memory
(PCM) [4], when commonly 2 to 16 cells are programmed
in parallel. Beyond the applicability to practical storage, the
results lay a basis for studying this important fundamental

trade-off between density and speed in non-volatile storage
devices.

II. Codes for high-performance write

In the first part of the paper we look into ways to encode
information when we wish to speed the write process up from
the worst-case write time offered without coding.

A. Multi-level parallel write model

In the commonly used breadth-first write process (see de-
scription in [5]), a number of cells are programmed in parallel
to the same target level. For NAND technology, the memory
level is reflected by the amount of electrical charge in each
cell. Alternatively, for PCM cells the levels are represented by
the electrical resistance values of the cells. The formal model
we define next abstracts the specific physical mechanism used
for writing, and thus can apply to any technology that uses
breadth-first write.

Let the state of the storage cell be represented as a discrete
cell level c, taken from the integer set {0, . . . , q−1}. Let N be
a memory block of size n, and let v = (v1, . . . , vn) be a vector
of target levels we want to write into N .

Definition 1. Given a vector of cell levels c = (c1, . . . , cn), with
ci ∈ {0, . . . , q − 1}, define the incidence set as the set I(c) =
{s ∈ {1, . . . , q−1}|∃i, ci = s}. The elements of I(c) are assumed
to be ordered in increasing order.

The breadth-first write scheme of the values v into the
memory block N of size n is given by:

Algorithm 1.

l = I(v)

∀i, ci = l1 // program all cells to min(v)

for k=2 to |l|
For all ci ∈N with ci < vi: ci = lk
// raising the level by lk − lk−1

end

which means that first all cells are programmed (in parallel)
to min(v). Then the next higher level in v is found, and
programmed into all cells that have target levels at least
that value. The process continues until this is done with
max(v). Therefore, it is clear that the number of programming
steps (which to first order is equivalent to write latency) is
proportional to |I(v)| and not to n.

B. The CNL code

From analyzing the write model it is obvious that reducing
the number of levels used to store information in a memory
block will also reduce the time needed to write this information
(number of write steps in the ”for” loop at Algorithm 1).
However, reducing the number of occupied memory levels will
also reduce the information storage rate of the memory block,
creating an interesting tradeoff between storage efficiency
and write-speed. Therefore, write optimization is achieved by
constraining the number of different levels occupied in each
vector of target levels v. The basic most naive write scheme
supporting this principle is to use only up to ω fixed levels.
For example, in a memory cell that includes {0, . . . , q − 1}
possible levels, the basic scheme will be limited to the values
{0, . . . , ω − 1} only. However, by coding it is possible to
improve the density/write speed tradeoff.

Definition 2. The CNL(ω) code (Constrained Number of Lev-
els) is a code in which every legal codeword u must fulfill
|I(u)| 6 ω, where 0 < ω 6 q. In other words, the level subset is
not fixed a priori, but any legal CNL codeword must have up to
only ω different occupied levels within the same block.

It is clear that according to the model, in a worst case
scenario in which all of the possible levels are used, the write
speed of the CNL code is the same as that of the fixed scheme
for the same ω.

Example 1. Suppose n = 8, q = 8 and we set ω = q/2 =
4. A legitimate codeword in the fixed model is for example
(3, 0, 2, 1, 0, 3, 1, 1) because it contains only levels in the set
{0, 1, 2, 3}. In the CNL code, in addition to the vector above we
may use the codeword (7, 0, 4, 1, 0, 0, 7, 1), because it similarly
includes 4 levels {0, 1, 4, 7}.

C. Information rate analysis

In order to asses the performance of a code the information
rate must be analyzed.

Definition 3. The Information RateR of n-cell, q-level memory
array is defined as

R = logq(M)/n,

where M is the number of legal combinations within the mem-
ory array. For example, when all possible combinations are
legal M = qn, hence R = 1.

Therefore, the information rate for the fixed write scheme
is given by

RFixed (n, q, ω) = logq (ωn) /n = logq (ω) .

The CNL code, however, has a better information rate,
which by definition is the optimal information rate that can be
achieved by writing only ω different levels. To calculate this
improved information rate we use the following proposition.

Proposition 1. The number of combinations in which exactly
k 6 n levels are occupied in an n-cell q-level array, is given by

C (n, q, k) = k! · S (n, k) ·
(

q

k

)

, (1)

where S (n, k) is the Stirling number of the second kind [6]. For
k > n the number of combinations is clearly 0 by definition.

Proof: The number of combinations to choose only k levels

out of the existing q levels is given by
(

q

k

)

. By multiplying it

by the number of surjections from n-cell set to q-level set
we obtain the desired combinations count. The number of
surjections from an n-set to a k-set equals k! · S (n, k) [7].

Theorem 2. The Information Rate of the CNL code is given by

RCNL (n, q, ω) = logq

min(n,ω)
∑

k=1

k! · S (n, k) ·
(

q

k

)

/n. (2)

Proof: By Definition 2 and Definition 3 it is clear that the
information rate of the code is given by

RCNL (n, q, ω) = logq

min(n,ω)
∑

k=1

C (n, q, k)

/n.

Using the expression for counting combinations from Eq. (1)
gives us claim (2).

When analyzing and comparing the information rates of the
fixed model and the CNL code as a function of log2(q) it is
possible to notice that the rate of the CNL code is higher than
the rate of the fixed model at all q values for a chosen n. In
addition, the rate of the CNL code increases as n becomes
smaller and as q becomes larger, while the rate of the fixed
model also increases as q becomes larger but does not depend
on n.

D. Worst case write speed analysis

In order to assess the overall performance of the code, the
write time, measured as the number of write steps, is now
analyzed.

Definition 4. The time T needed to write codeword u to n
cells memory block is measured by the number of write steps
given by |I(u)|, (Conversion to write time given in [seconds]
is achieved by multiplying T by the individual-write time in
[seconds]). The subscript of T indicates the specific code used
in the write process.

In the worst-case write scenario exactly ω levels are occu-
pied. Note that given a value of ω both the CNL code and the
fixed scheme have the same worst-case write time. To compare
between the CNL code and the fixed scheme, we will require
identical information rates for given n and q, obtaining an
equivalent number of occupied levels ω̂ for the fixed scheme.
Equating RCNL (n, q, ω) = RFix (n, q, ω̂) yields

ω̂ =

min(n,ω)
∑

k=1

k! · S (n, k) ·
(

q

k

)

1
n

.

In other words, a CNL codeword with given n, q and ω has
the same information rate as n cells with ω̂ fixed memory
levels (out of q). After equating the information rates it is
now possible to compare the worst-case write times. Note
that the value of ω̂ may be a non-integer. In that case, an
equivalent non-integer ω can be achieved by using the space-
sharing concept in which a (⌈ω⌉ −ω) fraction of the total cell
blocks uses ⌊ω⌋ levels while the rest use ⌈ω⌉ levels.

The worst-case write-time ratio (WTR) between the fixed
scheme and the CNL code is given by

WTR =
TFixed

TCNL

=
ω̂

ω
.

Since legal codewords of Fixed are always legal codewords of
CNL (but not vice-versa), we have ω̂ > ω and the write-time
ratio for the worst-case scenario is always higher than 1.

E. Average write speed analysis

We now examine the performance of the average write time
when the codewords are distributed uniformly.

Theorem 3. The average time for writing a CNL codeword of
length n to a q-level memory block where only up to ω levels
are occupied is given by

TCNL (n, q, ω) =

∑min(n,ω)

k=1
k · k! · S (n, k) ·

(

q

k

)

∑min(n,ω)

k=1
k! · S (n, k) ·

(

q

k

) . (3)

Proof: When using the CNL code, the probability that in a
codeword only k levels are occupied, 1 6 k 6 ω, is given by

Prob(u ∈CNL, |I(u)| = k) =
C (n, q, k)

∑min(n,ω)

k′=1
C (n, q, k′)

.

Calculating the expectation of the number of occupied levels
using Eq. (1) gives us claim (3).

It is clear from Theorem 3 that for the fixed write scheme
the average write time is

TFixed (n, q, ω) =
1

ωn

min(n,ω)
∑

k=1

k · k! · S (n, k) ·
(

ω

k

)

.

It is important to notice that by the way we define it, TCNL

and TFixed are actually the average number of the different
levels occupied in the CNL code and fixed write methods,
respectively.

To compare between the CNL code and the fixed scheme
in terms of average write time, we will again require identical
information rates for given n and q. Fig. 1 presents the average
write-time ratio between the fixed model and the CNL code
as a function of n and q, with ω = q/2. The entire plot reflects
parameters where the CNL code outperforms the fixed scheme
(time ratios greater than 1). In addition, it is observed that it
is possible to achieve up to 20 − 30% speed improvement by
using the CNL code.

2 2.5 3 3.5 4 4.5 5 5.5 6
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

 log
2
(q) − number of bits per cell

T
F

ix
e
d
 /

 T
C

N
L

Average write time ratio as a function of n&q for ω=q/2

n= 8

n=16

n=32

n=64

Figure 1. Average write time ratio for different values of n and q with
ω = q/2: n=8 (solid), n=16 (dashed), n=32 (dotted), n=64 (semi-dotted)

For lower values of ω, for example ω = q/4, the superiority
of the average write time of the CNL code was improved from
20 − 30% to 40 − 50% (for maximal improvement values).

III. Codes for high-performance read

In a similar way, by using a code it is possible to achieve
high-performance read. We use the parallel threshold model
(described in [3]) which means the cells are read by applying
a sequence of threshold measurements, each applied to the n
cells in parallel and returns n binary values of whether the cell
levels are above or below the threshold.

Definition 5. A threshold τ is an integer from the set {1, . . . , q−
1}. Given a threshold τ, a cell is said to be active with respect
to τ if its cell level satisfies c > τ. In the complementary case
of c < τ, the cell is said to be inactive with respect to τ.

Definition 6. A measurement is an operator acting on a set of
cells S by applying a threshold of τ, and obtaining |S| binary
values reflecting the activity of each cell in S with respect to τ.
We denote the measurement as a vector Mτ(S) = (m1, . . . ,m|S|),
where mi ∈ {0, 1}. mi = 1 represents an active cell with respect
to τ, and mi = 0 represents an inactive cell.

The number of measurements M, needed to fully read a
memory block, represents the effort (or time) required to com-
plete the reading process. Therefore, in order to achieve high-
performance read, M must be minimized while maintaining
the information rate as high as possible.

A. The FNCL code

We now introduce a code that has higher read-performance
than basic more natural read schemes. We first give some
formal definitions.

Definition 7. For a q-level memory cell, let us define the ω-
range ri (ω) as the ω consecutive levels starting from i − 1.
Therefore, {ri (ω) = [i − 1, i − 2 + ω] | 1 6 i 6 q − ω + 1}.
From Definition 7 it is clear that there are q − ω + 1 different
ω-ranges in a q-level memory cell.

Definition 8. For a q-level n-cell memory block, we define
Zi (ω) to be all possible combinations of length-n words where
all n levels are taken to be in the range ri (ω).

Definition 9. The FNCL(ω) code (Fixed Number of Consecu-
tive Levels) is a code in which for every q-level, n-cell memory
block c there is an i such that c ∈Zi (ω).

In the sequel we omit the argument ω from Zi, ri when its
value is clear from the context.

B. The information rate

Theorem 4. The Information Rate of the FNCL(ω) code is
given by

RFNCL (n, q, ω) = logq

[

(q − ω) · (ωn − (ω − 1)n) + ωn] /n. (4)

Proof: For the proof, we make the following definition.

Definition 10. Define the sets S i as S 1 = Z1 and S i = Zi \
(Zi ∩ Zi−1) , i > 1.

To simplify the counting of codewords, we replace the sets

{Zi}q−ω+1

i=1
used to define the code with the disjoint sets

{S i}q−ω+1

i=1
. There is no codeword that belongs to more than

one set S i, because belonging to S i, i > 1 implies that the
maximal level i − 2 + ω is occupied in at least one cell, and
this level is not part of any set S j with j < i.
Every set S i, i > 1 includes the ωn combinations of Zi,

excluding the combinations of Zi ∩ Zi−1. By definition the
joint combinations of Zi and Zi−1 can only include the lower
ω− 1 levels of Zi. Therefore, the number of combinations for
each S i, i > 1 is given by ωn − (ω − 1)n. There are (q − ω)
such sets in the code plus the extra set S 1 which includes ωn

combinations. Applying the total number of combinations to
Definition 3 yields (4).

An interesting special case is ω = q/2, where the redun-
dancy is less than one bit per q-ary cell, while the performance
savings can be significant. For ω = q/2 we get

RFNCL

(

n, q,
q

2

)

= logq

[

q

2
·
((

q

2

)n

−
(

q

2
− 1

)n)

+

(

q

2

)n]

/n.

As in Section II, we compare the FNCL code with a natural
more basic read scheme in which for every memory block a
fixed interval of ω consecutive levels (e.g. {0, . . . , ω − 1}) are
used. We refer to this read scheme as ”FixCons”, and calculate
its information rate to be

RFixCons (n, q, ω) = logq

[

ωn] /n.

For the case ω = q/2 we get

RFixCons

(

n, q,
q

2

)

= logq

[(

q

2

)n]

/n = 1 − logq2.

Due to the fact that (q/2)n−(q/2 − 1)n > 0 for all relevant n and
q, it is easy to see that RFNCL (n, q, q/2) > RFixCons (n, q, q/2),
which means that the rate of the FNCL code exceeds that of
FixCons for all n and q.

C. Number of measurements in the read process

We now examine the benefits in read performance offered
by the coding schemes defined in the previous sub-section. We
assume that upon reading a block the reader does not know
if the levels are taken according to the code or unconstrained
from the entire set of q levels. This assumption is necessary if
one wants to mix fast and regular reads without storing side
information for the reader.
We start with describing the reader for FixCons. In the Fix-
Cons scheme (assumed to use the lowest consecutive levels as
its fixed interval), the reader will start a sequential threshold-
measurements scan from level 1 and terminate when it reaches
the first level that is higher than all stored levels, which is ω in
the worst case. Thus the worst-case number of measurements
needed to fully read a memory block in the FixCons scheme
is MFixCons = ω, for any ω 6 q − 1. We now show a read
algorithm for FNCL.

Algorithm 2.

ReadFNCL(N)
τ0 = q/2
m0 = Mτ0

(N)
τ = τ0, m = m0

while ′1′ ∈m

τ = τ + 1 // go upwards
m = Mτ(N)

end
τ = τ0, m = m0

while ′0′ ∈m

τ = τ − 1 // go downwards
m = Mτ(N)

end

Theorem 5. The number of threshold measurements needed to
fully read an FNCL codeword is MFNCL = ω + 1 when q/2 6
ω 6 q − 2.

Proof: When reading a memory block using Algorithm 2
with ω > q/2, there is at most one measurement that falls
outside the set of levels allowed for codewords in S i. To see
this, observe that the center level τ0 = q/2 is allowed in all sets
S i, except possibly S 1. Starting at τ0 = q/2, Algorithm 2 will
go upward until reaching τ such that all levels are < τ. Then
it will go downward until reaching τ such that all levels are
> τ. The total number of visited levels is thus at most ω + 1.
When i = 1, the level τ0 = q/2 may be above the interval of
levels in S 1, but the total number of measurements is still at
most ω + 1 (in fact at most ω in this case).

D. Comparing FNCL vs. FixCons

To compare between the FNCL code and the FixCons
scheme, we will require identical information rates for given
n and q, obtaining an equivalent number of allowed lev-
els ω̂ for the FixCons scheme. Equating RFNCL (n, q, ω) =
RFixCons (n, q, ω̂) for ω = q/2 yields

ω̂ =

[

q

2
·
((

q

2

)n

−
(

q

2
− 1

)n)

+

(

q

2

)n]1/n

. (5)

Definition 11. For given n and q and ω = q/2, we define the
equal-information measurement ratio (EMR) as the ratio
between the number of measurements of FixCons and that of
FNCL. That is

EMR =
MFixCons

MFNCL

=
ω̂

ω + 1
=

ω̂

q/2 + 1
,

where ω̂ is given in (5).

The maximal value of the EMR is attained when n = 1,
yielding ω̂ = q and EMR = q/(q/2 + 1), which approaches
2 for large q. At the other extreme of n >> q, we get EMR
close to 1 (no advantage for FNCL). In intermediate cases of
constant n > 1

Theorem 6. When n > 1 and q >> n the asymptotic expression
for the EMR is given by

EMR =
n
√

n + 1 ·
(

1 − n − 1

n + 1
· 1

q

)

. (6)

Proof: Due to the fact that ω̂ > q/2 and q >> n > 1 the
EMR can be approximated by

EMR �
ω̂

q/2
=

[

1 +
q

2
·
(

1 −
(

1 − 2

q

)n)]1/n

.

Approximating (1 − 2/q)n by [1 − 2n/q + 2n(n − 1)/q2 + . . .]
gives

EMR �

[

1 + n − n(n − 1)

q

]1/n

=
n
√

n + 1 ·
[

1 − n − 1

n + 1
· n

q

]1/n

,

considering n/q << 1, further approximation yields (6).
For very large n the asymptotic expression of the EMR

reaches 1. However, for lower values of n, the EMR is larger
than 1. Therefore, the number of measurements needed for
full read in the FixCons scheme is 43% (n = 4, q = 64) to
10% (n = 16, q = 32) higher than in the FNCL code read pro-
cess (achieving the same information rate). Lower number of

measurements enables faster and more efficient read process.
As can be deduced from (6), for higher values of n the
superiority of the FNCL code diminishes.

E. Upper bound on information rate given read effort

After presenting constructive methods to lower the measure-
ment count using redundancy, we now seek a converse result
on limits for such measurement reduction given the expended
redundancy. Specifically, we look for upper bounds on the
best information rate achievable when up to M threshold mea-
surements are applied. The upper bounds enable us to asses
the performance of the FixCons and FNCL read schemes. We
start with a simple upper bound, followed by a tighter, more
involved one.

Theorem 7. The information rate in a q-level memory block
read by up to M threshold measurements is bounded from above
by

R (q,M) 6 min
(

M · logq2, 1
)

. (7)

We refer to the upper bound presented in Theorem 7 as the
Naive Upper Bound, since it does not take into account the
structure of the read process obtaining the nM bits. We now
derive a significantly tighter upper bound.

Theorem 8. The information rate in a n-cell, q-level memory
block read by up to M threshold measurements is bounded from
above by

R (n, q,M) 6 logq

M
∑

m=1

∑

(k,L, j) ∈ψ(m)

k! · S (n, k) · D j (q, k, L)

/n,

(8)
where ψ (m) = {(k, L, j) | k + L − j = m} and 1 6 k 6 n, 1 6 L 6
k, j ∈ {0, 1, 2} and the expressions for D j (q, l, L) are [9]:

D0 (q, l, L) =

(

l − 1

L − 1

)(

q − l − 1

L

)

,

D1 (q, l, L) = 2

(

l − 1

L − 1

)(

q − l − 1

L − 1

)

,

D2 (q, l, L) =

(

l − 1

L − 1

)(

q − l − 1

L − 2

)

+ ∆[l = q; L = 1].

The function ∆[] is 1 when all of its arguments are true and 0
otherwise.

Proof: In order to calculate the upper bound we need to find
a necessary condition for being able to read an information
vector in up to M measurements. For a given codeword c, the
minimal number of measurements needed to fully read c is
given by [3] M̂ (c) = |I(c)∪I∗(c)|, where I∗(c) is the shifted
incidence set defined as I∗(c) = {s ∈ {1, . . . , q − 1}|∃i, ci +

1 = s}. Therefore, in order to find all the combinations which
can be read by at most M measurements we need to find all
codewords c that fulfill M̂ (c) 6 M. In order to do so, we
recall from [3] that there are k! · S (n, k) · D j (q, k, L) level
combinations with k used levels, falling into L consecutive
runs, with j levels in the two extremes 0 and q − 1. Each
such combination requires at least k + L − j measurements.
Hence the number of combinations that can be measured by M
measurements are not more than those that satisfy k+L− j 6 M.
This is exactly the expression inside the log in (8).

The information rates of the upper bounds, FNCL code
and the FixCons scheme are presented in Fig. 2. The FNCL

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M − number of measurements

In
fo

rm
a

ti
o

n
 r

a
te

Information rate vs. number of measurements n=8, q=16

Upper bound

Naive upper bound

FNCL code

FixCons scheme

Figure 2. Information rates as a function of number of measurements: Upper
bound (pluses), Naive upper bound (squares), FNCL code (circles), FixCons
scheme (triangles)

is presented for the higher more interesting and practical
information rates. The FNCL outperforms the FixCons scheme
for all relevant values of M, however, the superiority of the
FNCL (relative to the FixCons scheme) decreases with M. In
addition, for middle-range values of M, the upper bound is
much tighter than the naive upper bound.

IV. Conclusion

Using coding within multi-level NVMs can significantly
improve read and write performance keeping the expended
redundancy to a minimum. The CNL code for optimal write
process was presented. In addition, the FNCL code for high-
performance read was introduced and compared to a fixed
scheme and upper bounds. It is an interesting question whether
there exist better codes (and matching read algorithms) than
the FNCL code presented here.

V. Acknowledgment

This work was supported in part by the Israel Ministry of
Science and Technology, and by an Intel ICRI-CI grant.

References

[1] K. Takeuchi, et-al. “A multipage cell architecture for high-speed program-
ming multilevel NAND flash memories,” IEEE Journal of Solid-State
Circuits, vol. 33.8, pp.1228-1238, Aug 1998.

[2] A. Berman, Y. Birk, Minimal Maximum-Level Programming: Faster
Memory Access via Multi-Level Cell Sharing, IEEE Global Commu-
nications Conference (GLOBECOM), 2013.

[3] E. Hemo, and Y. Cassuto, “Adaptive threshold read algorithms in multi-
level non-volatile memories,” in Proc. of IEEE Int. Symp. on Information
Theory, ISIT, July 2013, pp.714-718.

[4] S. Kang et al., “A 0.1-m 1.8-V 256-Mb phase-change random access
memory (PRAM) with 66-MHz synchronous burst-read operation,” IEEE
Journal of Solid-State Circuits, vol. 42.1, pp.210-218, Jan 2007.

[5] A. Berman, Y. Birk, ”Constrained flash memory programming” in Proc.
of IEEE Int. Symp. on Information Theory, July 2011, pp.2128-2132.

[6] J. van Lint and R. Wilson, A Course in Combinatorics, second edition.
Cambridge UK: Cambridge University Press, 2001.

[7] A. Mohr and T.D. Porter, ”Applications of Chromatic Polynomials In-
volving Stirling Numbers”, Department of Mathematics Southern Illinois
University, 2008.

[8] C. Trinh et al., “A 5.6 MB/s 64 Gb 4 b/Cell NAND ash memory in 43
nm CMOS,” ISSCC, vol. 52, pp.246-247, Feb. 2009.

[9] Y. Cassuto and M. Blaum, “Codes for symbol-pair read channels”, IEEE
Transactions on Information Theory, Vol 57, No. 12, December 2011.

