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Abstract—New upper bounds on the size and the rate of grain-
correcting codes are presented. The new upper bound on the
size of t-grain-correcting codes of length n improves on the best
known upper bounds for certain values of n and t, whereas
the new upper bound on the asymptotic rate of ⌈τn⌉-grain-
correcting codes of length n improves on the previously known
upper bounds on the interval τ ∈ (0, 1

8
]. A lower bound of

1

2
log

2
n on the minimum redundancy of ∞-grain-detecting codes

of length n is presented.

I. INTRODUCTION

In a paper by Wood et al. [16], a certain improvement to

the writing and readback mechanisms of magnetic recording

media was proposed allowing for a higher storage density due

to the ability of magnetizing areas commensurate with the

dimensions of basic units forming the media called grains.

Due to the higher density of writing, one physical grain can

be shared among several adjacent logical cells into which the

media were partitioned, thereby introducing a new type of

nonoverlapping smearing error to the information stored on

these media. After the publication of [16], the granular media

have been studied in several papers [1], [3], [4], [9], [12], [13].

Mazumdar et al. [9] described a one-dimensional model of

the errors occurring in these media restricting the grains to

be of lengths 1 and 2 only, and gave the first constructions

and bounds on the sizes of codes that correct these so-

called grain errors. In our earlier work [12], with a different

yet conceptually similar application to shingled writing on

bit-patterned media [2] in mind, we generalized the notion

of grain errors to account for overlapping error patterns as

well. Information-theoretic properties of the write channels

representing the one-dimensional versions of both applications

were studied by Iyengar et al. [3]. Kashyap and Zémor [4] and

Gabrys et al. [1], using a reduction to the problem of bounding

the size of packings in hypergraphs (see [8]), presented the best

known upper bounds on the size and rate of codes correcting

grain errors for the nonoverlapping and the overlapping cases,

respectively. The best known lower bounds on the size and rate

of those codes are due to another earlier work of ours [13],

where we combine a construction from [1] with a general

technique on improving Gilbert–Varshamov lower bounds

(see the results of Kolesnik and Krachkovsky [7]). Several

constructions of the codes correcting small number of grain

errors were presented in [1], as well as in [13].

This work was supported in part by Grant No. 1092/12 from the Israel
Science Foundation.

Let 〈s〉 denote the set {0, 1, . . . , s−1} for any positive inte-

ger s. Let Σ = 〈2〉 be the binary alphabet. A grain (of length

2) ending at location e ∈ 〈n〉 \ {0} in a word x = (xi)i∈〈n〉

of length n over Σ causes the value of xe to equal that of

xe−1. Given n consecutive positions on the medium (where

words of length n over Σ are to be written), define a grain

pattern as a set S ⊆ 〈n〉 \ {0} containing all the locations in

these n positions where grains end. We will commonly refer

to the elements of S (which indicate grain locations) simply

as grains. Thus, a grain pattern S inflicts errors to a word

x = (xi)i∈〈n〉 over Σ by means of the smearing operator σS

that yields an output word y = (yi)i∈〈n〉 = σS(x) over Σ in

the following way: for any index e ∈ 〈n〉 \ {0},

ye =

{

xe−1 if e ∈ S
xe otherwise

.

If overlaps are disallowed in a grain pattern S, for any two

distinct grains e, e′ ∈ S, we require in addition that |e′−e| > 1.

Example 1.1: Let n = 6, x = 010111, S = {1, 3, 5},

and S ′ = {1, 2}. Then σS(x) = 000011 and σS′(x) =
001111. The grain pattern S is nonoverlapping, whereas S ′

has overlaps.

For a positive integer t and x,y ∈ Σn, we say that x and

y are t-confusable if there exist grain patterns S,S ′ of size

at most t for which σS(x) = σS′(y). A code C of length n
over Σ (namely, a nonempty subset of Σn) is called t-grain-

correcting if no two distinct codewords in C are t-confusable.

Let M(n, t) denote the largest size of any binary t-grain-

correcting code of length n when overlaps are disallowed.1

For τ ∈ [0, 1], define the (asymptotic) rate of binary ⌈τn⌉-

grain-correcting codes as

R(τ) = lim
n→∞

1

n
log2 M(n, ⌈τn⌉).

For a positive integer n, let a code C of length n over Σ
be called ∞-grain-detecting if for any codeword x ∈ C and

any grain pattern S, one has σS(x) /∈ C. Finally, for a real

0 ≤ x ≤ 1, let

H(x) = −x log2 x− (1−x) log2(1−x)

be the binary entropy function.

The rest of the paper is organized as follows. In Section II,

we develop new upper bounds on M(n, t) and R(τ), whereas

1Therefore the upper bound on M(n, t) that we are about to present is
also an upper bound on the largest size of any binary t-grain-correcting code
of length n when overlaps are allowed.



Section III presents an upper bound on the size of ∞-grain-

detecting codes of length n.

II. UPPER BOUNDS ON M(n, t) AND R(τ)

For positive integers n and t, define MZ(n, t) to be the size

of the largest code of length n correcting t asymmetric errors

1 → 0. We start off by establishing a correspondence between

M(n, t) and MZ(n, t).
Lemma 2.1: Let n be a positive integer and t ≤ n/2 be

an integer. Then

M(n, t) ≤ 2⌈n/2⌉ ·MZ(⌊n/2⌋ , t) .
Proof: Let C be a largest binary t-grain-correcting code of

length n. For a word x = (xi)i∈〈⌈n/2⌉〉, define C(x) as a

subcode of C with codewords containing x as a substring on

the even-indexed positions, namely,

C(x) =
{

c = (ci)i∈〈n〉 ∈ C : for all i ∈ 〈⌈n/2⌉〉 , c2i = xi

}

.

By an averaging argument, there exists a word x of length

⌈n/2⌉, such that

|C(x)| ≥ |C| /2⌈n/2⌉ . (1)

Notice that a grain ending at position e can introduce an error

to a word c = (ci)i∈〈n〉 only if ce−1 ⊕ ce = 1, where ⊕
is the addition modulo 2, and that the value of ce−1 ⊕ ce
changes to a 0, as a consequence. Therefore, if we restrict

the grain patterns to the subset {e ∈ 〈n〉 : e is odd} of odd-

indexed locations only, the code C(x) will be equivalent to

the following code C⊕ of length ⌊n/2⌋ and of size |C(x)|
correcting t asymmetric errors 1 → 0:

C⊕ =
{

y = (c2i⊕c2i+1)i∈〈⌊n/2⌋〉 : c = (ci)i∈〈n〉 ∈ C(x)
}

.

This, along with (1), implies that

M(n, t) = |C| ≤ 2⌈n/2⌉ |C(x)| = 2⌈n/2⌉
∣

∣C⊕
∣

∣

≤ 2⌈n/2⌉MZ(⌊n/2⌋ , t).

Using the best known bounds on MZ(⌊n/2⌋ , t) from [15,

Table 10] results2 in improvements on the best known upper

bounds on M(n, t), as shown in Table I, which contains the

best known upper bounds (with the corresponding best known

lower bounds in parenthesis) on M(n, t) for small values of n
and t. Therein, the best upper bounds due to Lemma 2.1 are

marked in bold, whereas the best upper bounds on M(n, 1)
due to [4, Cor. 3] are marked with stars; the best lower bounds

on M(n, 1) due to [1, Constr. A] are marked with daggers, the

best lower bounds on M(n, 2) and M(n, 3) due to [1, Ex. 4]

(or variations thereof) are marked with diamonds, and the rest

of the values are derived from [12, Table 2], [13, Table 3], and

variations thereof. Tight upper bounds are marked in italics.

For a positive integer n, define the asymmetric distance

∆(c, c′) between two words c = (ci)i∈〈n〉 and c
′ = (c′i)i∈〈n〉

over Σ as

∆(c, c′)
△

= max {∆⋆(c, c′),∆⋆(c′, c)} ,

2Our definition of MZ(n, t) is equivalent to Z(n, t+1) in [15].

TABLE I
BOUNDS ON THE SIZES M(n, t) OF THE LARGEST KNOWN

t-GRAIN-CORRECTING CODES OF LENGTH n.

t
n

2 3 4 5 6 7 8 9 10 11 12 13

1 2 4 6 8 16 26 44 88(72) 176(112) 352(210†) 682⋆(372) 1260⋆(702†)

2 4 8 10 16 22 32 64 (44) 128 (68⋄) 256 (88) 512 (136⋄)

3 8 16 18 32 64 (38) 128 (64) 128 (76) 256 (128)

t
n

14 15 16 17 18

1 2304(1272) 4368⋆(2400†) 8190⋆(4522) 15420⋆(8428) 29126⋆(15348)

2 512 (176) 1024 (312⋄) 1792 (418⋄) 3584 (836⋄) 6144 (1318⋄)

3 256 (152) 512 (260⋄) 1024 (304) 2048 (520⋄) 2048 (608)

where

∆⋆(c, c′) = |{i ∈ 〈n〉 : ci = 0, c′i = 1}| ,
and the minimum asymmetric distance of a code C ⊆ Σn as

∆(C) △

= min
c,c′∈C:c 6=c

′

{∆(c, c′)} .

Let d(c, c′) denote the Hamming distance between two words

c, c′ ∈ Σn and d(C) denote the minimum Hamming distance

of the code C ⊆ Σn. In the following theorem, which is the

main result of this section, we prove a new upper bound on

R(τ).
Theorem 2.2: Let τ ∈ [0, 1

8 ]. Then

R(τ) ≤ ρ(τ)
△

=
1

2

(

1+ min
0<x≤1−8τ

{b(x)}
)

, (2)

where

b(x) = 1+h(x2)−h(x2+8τx+8τ)

and

h(x) = H
(

0.5(1−
√
1−x)

)

.

Proof: Let n be a positive integer and let C be a code of length

n correcting ⌈τn⌉ asymmetric errors of size MZ(n, ⌈τn⌉). Its

asymmetric distance ∆(C) is therefore at least ⌈τn⌉+1 (see [5,

Th. 2.1]). By an averaging argument, there exists a constant-

weight subcode C(w) of C whose codewords are of Hamming

weight w ∈ 〈n〉 \ {0}, whose size is at least (|C|−2)/(n−1),
and whose asymmetric distance is clearly at least ⌈τn⌉+1.

Since, by [5, Lemma 2.1], d(c, c′) = 2∆(c, c′) for any two

codewords c, c′ ∈ C(w), one has d(C(w)) ≥ 2(⌈τn⌉+1),
therefore C(w) can correct at least ⌈τn⌉ (Hamming) errors.

Let MH(n, t) denote the size of a largest binary code of

length n correcting t (Hamming) errors and

RH(τ) = lim
n→∞

1

n
log2 MH(n, ⌈τn⌉)

denote the (asymptotic) rate of the binary codes of length

n correcting ⌈τn⌉ (Hamming) errors. The above discussion

implies

MZ(n, ⌈τn⌉) = |C| ≤ (n−1) |C(w)|+ 2

≤ (n−1)MH(n, ⌈τn⌉) + 2,

which, combined with the result of Lemma 2.1, yields

M(n, ⌈τn⌉) ≤ 2⌈n/2⌉ ·
(

(⌊n/2⌋−1) ·MH(⌊n/2⌋ , ⌈τn⌉)+2
)

.

(3)



Asymptotically, the inequality (3) implies

R(τ) ≤ 1

2
(1+RH(2τ)) .

Finally, to obtain the upper bound (2), we use the second

MRRW upper bound [10, Ch. 17, Th. 37] on RH(2τ).

Figure 1 depicts the upper bound ρ(τ) of Theorem 2.2

along with two previously best known upper bounds ρ1(τ)
(see [4, Th. 5]) and ρ2(τ) (see [13, Th. 3.3]) obtained using

information-theoretic and sphere-packing arguments, respec-

tively. The best known lower bound ̺(τ) (see [13, Th. 2.4]),

which is essentially a modification of the Gilbert–Varshamov

bound

̺4(τ)
△

= 1−H(2τ) ,

is plotted therein for comparison (along with ̺4(τ)). Also for

comparison, in a dotted line we plot the Gilbert–Varshamov

lower bound

̺5(τ)
△

= 1−1

2
H(4τ)

on the rate of the largest ⌈τn⌉-grain-correcting codes of

length n when the grain patterns are restricted to the subset

{e ∈ 〈n〉 : e is odd}. The upper bound ρ(τ) improves on

ρ1(τ) and on ρ2(τ) on the entire interval (0, 1
8 ], and at τ = 1

8 ,

it coincides with the lower bound of 1
2 on R(τ) obtained

by a simple construction from [9, Sec. 2]. The upper bound

ρ(τ) also improves on the entire interval (0, 1
8 ] on the upper

bound ρ3(τ) derived from [1, Th. 1] on the rate of ⌈τn⌉-grain-

correcting codes of length n when overlaps are allowed.

✲ τ

✻

R(τ)

0

1

2

1

0.0668 1

8

❄

ρ1(τ)

❄

ρ2(τ)

❄

ρ3(τ)

❄

ρ(τ)

✻

̺4(τ)

✻

̺(τ)

✻

̺5(τ)

Fig. 1. Upper bound ρ(τ) along with upper bounds ρ1(τ), ρ2(τ) and ρ3(τ)
and lower bounds ̺(τ), ̺4(τ), ̺5(τ).

The fact that the new upper bound ρ(τ) meets the lower

bound of 1
2 at τ = 1

8 implies a very slow decrease in the

size M(n, ⌈τn⌉) of a largest ⌈τn⌉-grain-correcting code of

length n when τ runs from 1
8 to 1

2 , which is evidenced in the

following example. Let t be a positive integer and let n =
4t. Since a largest code of length n/2 = 2t correcting t =
n/4 asymmetric errors is of size 2, by Lemma 2.1, the size

M(n, n/4) of a largest n/4-grain-correcting code of length

n is at most 2n/2+1. As, due to [9, Prop. 1], M(n, n/2) =
2n/2, when t runs from n

4 to n
2 , the largest code size M(n, t)

decreases only by at most a factor of 2.

III. GRAIN DETECTION

In [12, Prop. 5.1], we have proved the existence of ∞-

grain-detecting codes C (that is, codes capable of detecting any

number of grain errors) of length n over Σ with redundancy

n− log2 |C| ≤ 1.5 log2 n+O
(

1
n

)

for the overlapping and nonoverlapping scenarios. Employing

arguments similar to those used in the proof of Lemma 2.1,

we conclude that the size of a largest ∞-grain-detecting code

of length n over Σ is bounded from above by 2⌈n/2⌉ times

the size of a largest code of length ⌊n/2⌋ over Σ capable of

detecting any number of asymmetric errors, which is known

to be
(

⌊n/2⌋
⌊n/4⌋

)

[14]. Altogether, this implies a lower bound of
1
2 log2 n+O(1) on the minimum redundancy

rn
△

= n− max
C⊆Σn is an

∞-grain-detecting code

{log2 |C|}

of ∞-grain-detecting codes of length n when overlaps are

allowed or disallowed.

For the overlapping scenario, the upper bound on the size of

a largest ∞-grain-detecting code of length n can be improved

by a constant factor (namely, by an additive constant term in

the redundancy). In what follows, we will show how to obtain

such an upper bound; the proof technique is inspired by the

Christmas tree pattern [6, Sec. 7.2.1.6] of arranging 2n binary

strings into chains of subsets.

Define the following (partial) order relation � between two

words x and y of the same length over Σ. The word x will be

dominated by the word y, x � y, if there exists a grain pattern

S such that σS(y) = x. Our construction will be by induction

on the value of ℓ where at step ℓ we will create sℓ new sets

Cℓ;j of words of length ℓ for j ∈ 〈sℓ〉 out of sℓ−1 sets Cℓ−1;j

of words of length ℓ−1 for j ∈ 〈sℓ−1〉. Each one of the sets

Cℓ;j will be shown in Lemma 3.4 to be totally ordered with

respect to �, and the “biggest” and the “smallest” words in

Cℓ;j will be denoted by F(Cℓ;j) and f(Cℓ;j), respectively. The

value of 2sn will then determine an improved upper bound on

the size of a largest ∞-grain-detecting code of length n when

overlaps are allowed, as will be explained shortly.

Construction 3.1: Basis (ℓ = 1). Let C1;0 = {0}.

Step (ℓ ≥ 2). For j ∈ 〈sℓ−1〉, from a set Cℓ−1;j of size 1, we

derive a new set

(C1) Cℓ−1;j × Σ.

From a set Cℓ−1;j of size at least 2 whose words all end with

a ∈ Σ, we derive two new sets

(C2) (Cℓ−1;j × {a}) ∪ {f(Cℓ−1;j)a},

(C3) (Cℓ−1;j × {a}) \ {f(Cℓ−1;j)a},

where a denotes the binary complement of the symbol a ∈ Σ.



From a set Cℓ−1;j of size at least 2 such that there exists

only one word c ∈ Cℓ−1;j , c 6= F(Cℓ−1;j), that ends with a
and the rest of the words end with a, we derive two new sets

(C4) (Cℓ−1;j × {a}) ∪ {ca},

(C5) (Cℓ−1;j × {a}) \ {ca}.

Remark 3.2: Notice that for all sets Cℓ;j , either the last

symbols of the words of Cℓ;j are the same or there is only

one word c 6= F(Cℓ;j) whose last symbol is different from the

last symbols of the rest of the words of Cℓ;j .

Example 3.3: The first four rounds of Construction 3.1

yield C1;0 = {0}, C2;0 = {00, 01}, C3;0 = {000, 001, 010},

C3;1 = {011}, C4;0 = {0001, 0011, 0010, 0101}, C4;1 =
{0000, 0100}, C4;2 = {0111, 0110}.

The following lemma proves by induction on ℓ that each set

Cℓ;j is totally ordered with respect to � which justifies the

use of the operator f(·) in Construction 3.1.

Lemma 3.4: For any positive integer ℓ and any j ∈ 〈sℓ〉,
the set Cℓ;j is totally ordered with respect to �.

Proof: Readily, the set C1;0 = {0} is totally ordered, which is

the basis of our induction proof. As for the induction step, let

us assume that each one of the sets Cℓ−1;j is totally ordered for

every j ∈ 〈sℓ−1〉. To prove the statement of the lemma, it will

suffice to take two words x,y ∈ Cℓ−1;j such that x � y and

show the order between all the words in Cℓ;j′ whose prefixes

of length ℓ−1 are x and y, for each one of the cases (C1)–

(C5).

(C1) In this case, x = y. When x ends with a 0, the order

between x0 and x1 is x0 � x1, whereas when x ends with

a 1, the order is x1 � x0.

(C2) When x 6= f(Ci−1;j), the order between xa and ya is

xa � ya; when x = f(Ci−1;j), the order between xa, xa,

and ya is xa � xa, xa � ya, and xa � ya.

(C3) The order between xa and ya is xa � ya.

(C4) When x,y 6= c, the order between xa and ya is xa �
ya; when x = c, the order between xa, xa, and ya is

xa � xa, xa � ya, and xa � ya; when y = c, the

order between xa, ya, and ya is xa � ya, ya � ya, and

xa � ya.

(C5) The order between xa and ya is xa � ya.

In light of the result of Lemma 3.4 and by the simple

observation that {Cn;j : j ∈ 〈sn〉} is a partition of 0Σn−1 for

a positive integer n, each set Cn;j for j ∈ 〈sn〉 can contribute

at most one word to an ∞-grain-detecting code of length n.

Therefore, by extending the above argument to all the words

of length n that start with a 1, we obtain an upper bound of

2sn on the size of a largest ∞-grain-detecting code of length

n. It is left to find the value of sn; to that end, let us first

observe the values of sℓ for small values of ℓ, as shown in

Table II.

TABLE II
VALUES OF sℓ FOR SMALL VALUES OF ℓ.

ℓ 1 2 3 4 5 6 7 8 9 10

sℓ 1 1 2 3 6 10 20 35 70 126

The sequence of the values of sℓ appearing in Table II

matches the beginning of the sequence [11] which equals the

number
(

ℓ−1
⌊(ℓ−1)/2⌋

)

of walks of length ℓ−1 on the square

lattice from the origin (0, 0) by moving down or moving right,

all the while staying on the points (x, y) satisfying x+y ≥ 0.

This observation gives rise to the following lemma.

Lemma 3.5: Let ℓ be a positive integer and let x =
(xi)i∈〈ℓ〉 be a word of length ℓ over Σ. For a positive integer

k ∈ 〈ℓ〉 \ {0}, let

pk(x) = 2 |{s ∈ 〈k〉 : xs 6= xs+1}| − k

= |{s ∈ 〈k〉 : xs 6= xs+1}| − |{s ∈ 〈k〉 : xs = xs+1}|
be the difference between the number of symbol alternations

and the number of symbol repetitions in the prefix of length

k+1 of x. Then for any j ∈ 〈sℓ〉, the only word x in Cℓ;j

which satisfies pk(x) ≥ 0 for all k ∈ 〈ℓ〉 \ {0} is F(Cℓ;j).
Proof: One can readily see that for any positive integer ℓ ≥ 2
and any j ∈ 〈sℓ〉, one has

|Cℓ;j | = pℓ−1(F(Cℓ;j))+1 . (4)

We will prove the claim of the lemma by induction on ℓ.
Clearly, the claim holds for ℓ = 2, namely, the only word x

in C2;0 that satisfies p1(x) ≥ 0 is F(C2;0) = 01. As for the

induction step, let us assume that for ℓ ≥ 3, the only word

x in each one of the sets Cℓ−1;j which satisfies pk(x) ≥ 0
for all k ∈ 〈ℓ−1〉 \ {0} is F(Cℓ−1;j). To prove the claim of

the lemma, it will suffice to take x = F(Cℓ−1;j) and, for each

one of the cases (C1)–(C5), show that the word y in Cℓ;j′ ,

whose prefix of length ℓ−1 is x, satisfies pk(y) ≥ 0 for all

k ∈ 〈ℓ〉 \ {0} if and only if y = F(Cℓ;j′).

(C1) Without loss of generality, x ends with a 0 and

x1 = F(Cℓ;j′). Since pℓ−1(x1) = 1 + pℓ−2(x) ≥ 1
by the induction hypothesis and pk(x1) = pk(x) for

k ∈ 〈ℓ−1〉 \ {0}, the word x1 satisfies pk(x1) ≥ 0 for

all k ∈ 〈ℓ〉 \ {0}. Moreover, by (4), pℓ−2(x) = 0, therefore

pℓ−1(x0) = −1 implying that x1 is the only word y in

Cℓ;j′ satisfying pk(y) ≥ 0 for all k ∈ 〈ℓ〉 \ {0}.

(C2) In this case, the only word in Cℓ;j′ whose prefix is x is

xa. Since x ends with a, by the induction hypothesis one

has pℓ−1(xa) = pℓ−2(x)+1 ≥ 1, so the only word y in

Cℓ;j′ satisfying pk(y) ≥ 0 for all k ∈ 〈ℓ〉 \ {0} is xa.

(C3) In this case, the only word in Cℓ;j′ whose prefix is x is

xa. Since x ends with a, by the induction hypothesis and

by (4), one has pℓ−1(xa) = pℓ−2(x)−1 ≥ 0, hence the only

word y in Cℓ;j′ satisfying pk(y) ≥ 0 for all k ∈ 〈ℓ〉 \ {0}
is xa.

(C4) In this case, by Remark 3.2, the only word in Cℓ;j′

whose prefix is x is xa. Since x ends with a, by the

induction hypothesis one has pℓ−1(xa) = pℓ−2(x)+1 ≥ 1,

so the only word y in Cℓ;j′ satisfying pk(y) ≥ 0 for all

k ∈ 〈ℓ〉 \ {0} is xa.

(C5) In this case, the only word in Cℓ;j′ whose prefix is x is

xa. Since x ends with a, by the induction hypothesis and

by (4), one has pℓ−1(xa) = pℓ−2(x)−1 ≥ 0, hence the only

word y in Cℓ;j′ satisfying pk(y) ≥ 0 for all k ∈ 〈ℓ〉 \ {0}
is xa.

Corollary 3.6: Let ℓ be a nonnegative integer. Then

sℓ =

(

ℓ−1

⌊(ℓ−1)/2⌋

)

.



Proof: Due to the result of Lemma 3.5 and the observation that

{Cℓ;j : j ∈ 〈sℓ〉} is a partition of 0Σℓ−1, instead of counting

different sets Cℓ;j , we can count the number of “biggest” words

x = (xi)i∈〈ℓ〉 ∈ 0Σℓ−1 which satisfy |pk(x)| ≥ 0 for all

k ∈ 〈ℓ〉 \ {0}. Now, there is a natural 1-to-1 correspondence

between such words and walks of length ℓ−1 on the square

lattice from the origin (0, 0) by moving down or moving right,

all the while staying on the points (x, y) satisfying x+y ≥ 0,

specifically, we move right at step k of that walk if xk−1 6= xk

and move down otherwise. Since the number of these walks

is, as we have mentioned before,
(

ℓ−1
⌊(ℓ−1)/2⌋

)

, the result of the

corollary follows.

Since limn→∞ 2⌈n/2⌉
(

⌊n/2⌋
⌊n/4⌋

)

/2
(

n−1
⌊(n−1)/2⌋

)

=
√
2, for large

values of n, the upper bound on the size of ∞-grain-detecting

codes of length n (with overlaps allowed) due to Corollary 3.6

is ≈
√
2 times smaller than the upper bound 2⌈n/2⌉

(

⌊n/2⌋
⌊n/4⌋

)

on the size of ∞-grain-detecting code of length n due to

Lemma 2.1 that we have mentioned at the beginning of this

section.

TABLE III
SIZES OF LARGEST t-GRAIN-DETECTING CODES OF LENGTH n WHEN

OVERLAPS ARE DISALLOWED.

t
n

2 3 4 5 6 7 8

1 2 4 8 16 32 64 128

2 8 10 18 34 58

3 18 32 56

4 56

TABLE IV
SIZES OF LARGEST t-GRAIN-DETECTING CODES OF LENGTH n WHEN

OVERLAPS ARE ALLOWED.

t
n

2 3 4 5 6 7 8

1 2 4 8 16 32 64 128

2 4 6 10 18 30 52

3 6 8 12 22 42

4 8 12 20 32

5 12 20 32

Tables III and IV list the sizes of largest t-grain-detecting

codes of length n when overlaps are disallowed and allowed,

respectively, for small values of n and t, found using a

computer search.3 It can be seen that already for length n = 5,

there is a gap between the upper bound of 2
(

4
2

)

= 12 on the

size of ∞-grain-detecting codes of length 5 when overlaps are

allowed due to Construction 3.1 and the size 8 of a largest ∞-

grain-detecting code. However, using ad hoc arguments, it is

still possible to partition the 16 words in 0Σ4 into the four

sets

C5;0 = {00000, 00100, 01000, 01001} ,
C5;1 = {00001, 00011, 00010, 00101} ,
C5;2 = {00110, 01110, 01100, 01010} ,
C5;3 = {00111, 01111, 01101, 01011}

3The entries for t = 1 in both tables follow from simple observations that
the Hamming distance between two distinct codewords with the same value
in their first bit of any binary 1-grain-detecting code must be at least 2 and
that binary parity code of any length is 1-grain-detecting.

of size 4, which are totally ordered with respect to �. This,

in turn, results in a tight upper bound of 8 on the size of ∞-

grain-detecting codes of length 5 when overlaps are allowed.

On the other hand, using a computer search, one can

establish that for n = 6, the smallest number of totally ordered

sets C6;j required to partition 0Σ5 is 7, which results in the

upper bound of 14 on the size of a largest ∞-grain-detecting

code of length 6 with overlaps; this bound is strictly less than

the size 12 of a largest such code. One such partition is given

by

C6;0 = {000000, 000001, 000010, 000101, 001010} ,
C6;1 = {000110, 000100, 001100, 001101, 001010} ,
C6;2 = {000011, 000111, 001011, 010111, 010101} ,
C6;3 = {001000, 011000, 010000, 010001, 010010} ,
C6;4 = {001001, 011001, 011011, 010011} ,
C6;5 = {001111, 011111, 011110, 011101} ,
C6;6 = {001110, 011100, 011010, 010100} .

Similar phenomena occur when overlaps are disallowed: for

n = 5 it is possible to partition 0Σ4 into 5 totally ordered

sets using ad hoc arguments, yet for n = 6 it is provably

impossible to partition 0Σ5 into 9 totally ordered sets.
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