

Adaptive Threshold Read Algorithms in Multi-level Non-Volatile Memories

Evyatar Hemo Yuval Cassuto

Electrical Engineering Department Technion – Israel Institute of Technology

May 2015

Introduction

In recent years

Cost per GB reduced

Multi Level NVM

May 2015 -2-

Scaling effects

	SLC	MLC	TLC
Bits per cell	1	2	3
P/E Cycles	100,000	3,000	1,000
Read Time	25 μs	50 μs	~75 μs
Program Time	200-300 μs	600-900 μs	~900-1350 μs
Erase Time	1.5-2 ms	3 ms	4.5 ms

Higher density / Lower cost

Higher performance and endurance

Increasing the number of memory levels:

Increases density

U

Decreases cost

•

Increases read/write time

.

Decreases lifetime

...

May 2015 -3-

Reading speed vs. Storage capacity

May 2015 -4-

Threshold Read

$$M_{\tau}(C) = \begin{cases} '0' & C < \tau \\ '1' & C \ge \tau \end{cases}$$

Threshold-Read Sequence

Potssie le wallues

May 2015 -6-

Parallel Threshold Read

Memory cells

Reladissijoilse connalless

0	0	0	0	← τ=1
1	1	1	1	$\tau=2$
2	2	2	2	$\leftarrow \tau = 3$
3	3	3	3	l=3

Uncertainty L: windows U:

 2
 0
 1
 3

 2
 0
 1
 3

Threshold Read Algorithms

Research question:

Given n cells with q levels, how many measurements are required to read all the cells completely?

The reading is complete when L=U for all memory cells, e.g.

L:

U:

2	0	1	3
2	0	1	3

- Adaptive algorithms
 - Next measurement <u>depends on outcomes</u> of previous ones
- Average number of reads
 - Assuming <u>uniform</u> level distribution, <u>or other</u> natural dist.
- 1< n << ∞</p>

1) Adaptive Sequential Scan

- Measure from $\tau=1$ to $\tau=q-1$
- Stop when all *n* cell levels are determined

-9-

Adaptive Sequential Scan - Analysis

The average number of measurements for adaptive sequential scan is given by:

$$E[q-1-\#meas.] = \sum_{k=1}^{q-2} (q-1-k) \left[\left(\frac{k}{q} \right)^n - \left(\frac{k-1}{q} \right)^n \right]$$

After some algebra:

$$T(n,q) = (q-1) - \sum_{k=1}^{q-2} \left(\frac{k}{q}\right)^n$$

non-adaptive seq. scan

2) n-cell Binary Search

Memory cells

References

τ=3 →
Middle of uncertainty window

0	0	0	0
1	1	1	1
2	2	2	2
3	3	3	3

Middle of uncertainty
 Middle of uncertainty
 τ=2 uncertainty window

Uncertainty L

windows U:

2	3	1	1
2	3	1	1

May 2015 -11-

n-cell Binary Search Algorithm

- 1. Choose an uncertainty window [L,U] of a cell; measure $\tau = \frac{U+L+1}{2}$
- 2. For all cells $\langle \tau \rangle$: reduce uncertainty window to [L, τ -1]
- 3. For all cells $\geq \tau$: reduce uncertainty window to $[\tau, U]$
- Return to 1 until L=U for all cells

Binary search – performance

■ The average number of measurements needed for binary-search read is given by the recursive formula:

$$l = log_2 q$$

$$F(n, l) = \sum_{i=0}^{n} \frac{\binom{n}{i}}{2^n} (1 + F(i, l-1) + F(n-i, l-1))$$

- Where F(n,l)=0 if either n=0 or l=0
- An explicit analytic expression for F (n,l) is given by:

$$F(n, l) = \sum_{k=0}^{l-1} 2^k \left[1 - \left(1 - \frac{1}{2^k} \right)^n \right] \xrightarrow{n \to \infty} q - 1$$

3) Lower Bound

Theorem:

Any read algorithm requires on average at least LB(n, q) measurements given by

May 2015 -14-

Lower Bound – idea

Every level i used within the n cells requires measurements

Memory cells

 $\tau = i \text{ and } \tau = i + 1.$

May 2015 -15-

Incidence Sets

- <u>Definition</u>: given a vector of cell levels $c = (c_1 ... c_n)$ with $c_i \in \{0 ... q 1\}$ we define:
 - Incidence set as the set $I(c) = \{s \in \{1 ... q 1\} | \exists i, c_i = s\}$
 - The **shifted incidence set** is defined as $I^*(c) = \{s \in \{1 \dots q-1\} | \exists i, c_i + 1 = s\}$
- For a cell vector c, the number of measurements is at least $|I(c) \cup I^*(c)|$

The D_i functions

Each combination counted by $D_j(q, k, L)$ requires at least k+L-j threshold measurements

May 2015 -17-

Lower Bound – proof sketch

- Count incidence sets of each possible size, given k used levels
- Count level combinations with k used levels
- Average over k

$$LB(n,q) = \frac{1}{q^n} \sum_{k=1}^{n} k! \cdot S(n,k) \cdot \left[\sum_{L=1}^{k} \sum_{j=0}^{2} D_j(q,k,L) \right] (k+L-j)$$

May 2015 -19-

Analytic Results, n=4

May 2015 -20-

Analytic Results, n=q/2

May 2015 -21-

2D Read Algorithms

- Cells in an $m \times n$ array
- 2D Read algorithm:
 - Choose n cells to measure
 - 2. Choose level τ

-22-

2D Algorithms - motivation

Suppose we read the following 2x2, q=8 array row-by-row (1D):

1 2 0 3

- Top row: at least 3 meas. {1,2,3}
- Bottom row at least 3 additional meas. {1,3,4}
- Total of 6 measurements for the array

2D Algorithms – motivation

Alternatively, if we can choose whether to measure a row or a column

> Original array

1	2
0	3

Top row with $\tau = 2$

0	2
0	0

U:

1	7
7	7

Left column with $\tau = 1$

L:

1	2
0	0

U:

-24-

1	7
0	7

Right column with $\tau = 3$ and $\tau = 4$ will reveal the entire array

2D reading reduced the number of measurements from 6 to 4 May 2015

Greedy 2D Algorithms

- Select "best" n cells and threshold τ
- The criterion: minimize the sum of expected uncertainties after measurement.

$$\Omega = \log(U - L + 1)$$

Expected uncertainty, cell i:

$$H_i(\tau) = \Pr(c_i < \tau) \log(\tau - L_i) + \Pr(c_i \ge \tau) \log(U_i - \tau + 1) =$$

$$\frac{\tau - L_i}{U_i - L_i + 1} \log(\tau - L_i) + \frac{U_i - \tau + 1}{U_i - L_i + 1} \log(U_i - \tau + 1).$$

The CRDF algorithm

- The Column Row Degree of Freedom (CRDF) algorithm has the ability to choose in each scan whether to measure a row or column based entropy criterion
- The criterion is calculated for all rows and columns and for all possible thresholds
- The measurement is executed for the best threshold and row\column

-26-

The ANDF algorithm

- The Any N degree of Freedom (ANDF) is very similar to the CRDF algorithm, however has the ability to choose any 'n' cells out of the 2D nxn array
- The ANDF is more flexible algorithm but it also very greedy and difficult to implement on hardware
- The ANDF serves as a practical lower bound
- The performance of both CRDF and ANDF was evaluated by simulations

May 2015 -27-

2D Lower Bound

Theorem:

Given the uniform level distribution, a lower bound on the average number of *n*-cell measurements required to read an array of N cells is given by

$$LB2D\left(N,q,n\right) = LB\left(N,q\right) + \left(q-1\right) \cdot \sum_{d=n+1}^{N} \left\lfloor \frac{d-1}{n} \right\rfloor \cdot \binom{N}{d} \cdot \left(\frac{2}{q}\right)^{d} \cdot \left(\frac{q-2}{q}\right)^{N-d}$$

May 2015 -28-

The 1D lower bound

Selection Domains

- Only rows → binary search
- Rows or columns → CRDF algorithm
 - column/row degrees of freedom

- Any n → ANDF algorithm
 - any n degrees of freedom
- We also derived 1D & 2D lower bounds

2D - Results

May 2015 -30-

2D - Results cont.

May 2015 -31-

Non-uniform Level Distributions

Prior bias toward level 0:

$$\Pr(c=0) = \frac{m}{U+1}$$

- For some real $m \geq 1$
- The remaining levels are distributed as:

$$Pr(c = k, k \neq 0) = \frac{U+1-m}{U(U+1)}$$

Theorem: the expected uncertainty after measurement of a cell with [0,U] uncertainty window is

$$H(\tau) = \frac{m}{U+1} \log \left(1 + \frac{(U+1-m)(\tau-1)}{mU} \right) + (\tau-1) \frac{U+1-m}{U(U+1)} \log \left(\tau - 1 + \frac{mU}{U+1-m} \right) + \frac{(U+1-m)(U-\tau+1)}{U(U+1)} \log(U-\tau+1).$$

Non-Uniform Distribution - Results

May 2015 -33-

Conclusion

- Analysis of 1D read algorithms + derivation of a lower bound were presented
- We have also shown greedy 2D algorithms + a 2D lower bound

Future work:

Combining coding in order to skip measurements