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Introduction

m Inrecent years

1M 350 for 1B 305 RAMAC
9 Megabytes ... $120,000

m Costper GB reduced

$10.00
Dollars per Gigabyte

Storage SSD
Server SSD
fmm===_ Mission Critical HDD

Business Cntical HDD

2010 2011 2012 2013 2014 . a
Higher Cost SSD

Lower Cost SSD

Source: Gariner, Market Trends: Evolving HDD and SSD Storage Landscapes (Oclober 2013)




Multi Level NVM @
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Scaling effects

Bits per cell

P/E Cycles 100,000 3,000 1,000

Read Time 25 ps 50 pus ~75 ps
Program Time 200-300 ps 600-900 ps ~900-1350 ps

Erase Time 1.5-2 ms 3 ms 4.5 ms

Higher density / Lower cost

m Increasing the number of memory levels:

® |ncreases density =7
e Decreases cost -
® |ncreases read/write time
® Decreases lifetime e
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Reading speed vs. Storage capacity @

Reading speed vs. Storage capacity as a function of g
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Threshold Read @

C=5
I I I I [ |
I | I I I |
I | I I I |
I I I I I |
I I I I I |
0 1 2 3 4 5 6 7
Measurement:
C=3
M (C 0" C«x<r
(€)= 1' C>1
0 1 2 3 4 - 6 7
\ lAl J
| |
‘O! .l-: 1

May 2015 -5-



Threshold-Read Sequence

Pdssidle 0 1 2 3 4 5 6 7
e less

=1 T=2 =4
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Parallel Threshold Read @

cells

Memory 2 0 1 3
cells
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Threshold Read Algorithms

Research question:

¥

Given n cells with g levels, how many measurements
are required to read all the cells completely?

m Thereading is complete when L=U for all memory cells,

e.g.

L: 2 0

1

3

U: 2 | 0

1

3

m Adaptive algorithms

® Next measurement depends on outcomes of previous ones

m Average number of reads

® Assuming uniform level distribution, or other natural dist.

B I<n<<
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1) Adaptive Sequential Scan

m Measure from r=1to 7=0-1
m Stop when all n cell levels are determined
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Adaptive Sequential Scan - Analysis

m The average number of measurements for adaptive
seqguential scan is given by:

g-2 .kn 'k—]'”
Elg—1—#meas.] = “1-b|l=] -|—
a1 -ameast= 3010 0] ()|

m After some algebra:

non-adaptive seq. scan
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2) n-cell Binary Search

Memory 2 3

1 1
cells
Middle of
0 0 0 0 < r=1 uncertainty
Rezoisthle | 1 | 1 | 1 [ 1 5 uneno
<€ T= uncertainty
comm&le 2 2 2 2 window
=3 >
Middle of 33| 3|3
uncertainty
window
Uncertainty L: 2 3 1 1

windows U: 2 3 1 1
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n-cell Binary Search Algorithm @

. ) U+L+1
Choose an uncertainty window [L,U] of a cell; measure t =

For all cells < t :reduce uncertainty window to [L, t-1]
For all cells = t : reduce uncertainty window to [z, U]
Return to 1 until L=U for all cells

- A

May 2015 -12-



Binary search — performance @

m The average number of measurements needed for
binary-search read is given by the recursive formula:

= log,q F(n,f}zz{%[l+F[f,!—]J+F{n—f,.’—1])
i=(

m Where F(n,)=0 if either n=0 or I1=0

m  An explicit analytic expression for F (n,l) is given by:

-(1-4

n

n — oo

-1
Fnl = Z 2k
k=)
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3) Lower Bound @

m Theorem:

Any read algorithm requires on average at least LB(n, q)
measurements given by

k i

LB(n, q)——Zk' S (k). ) > Dilgk.L)-(k+L—))

I=1 j=0

Explicit, known
functions
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Lower Bound — idea @

Memory 1 3 4 7
cells

m Every level i used within the n
cells requires measurements
t=iandt=1i+1.
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Incidence Sets @

m Definition: given a vector of cell levels
c=(cq..cp) Withc; € {0..q — 1} we define:
® |ncidence set as the set

I(c)={se{l..q—1}|3i,c; = s}
® The shifted incidence set is defined as
I'(c)={se{l..q—1}|3i,¢c; + 1 = s}

m For acell vector c, the number of measurements
Is at least |I(c) UI"(c)|
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The D; functions @

L consecutive D;(g,k,L)
runs

] Is the number of times the runs touch
the edges

m Each combination counted by D, (g, k, L) requires at |least
lk+l_-1 threshold measurements
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Lower Bound — proof sketch @

m Countincidence sets of each possible size, given k used
levels

m Average over k

1 n K
LB[n.q)ZEZk!-S{n,k%Z (kD k+L-j)
k=1
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Analytic Results, n=4

Different scan methods for n=4
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Analytic Results, n=q/2

Different scan methods for n=g/2
70 T T

—+— lower bound ju
==€r= binary search 2
B} sequential scan
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2D Read Algorithms @

m Cellsinanm xn array

m 2D Read algorithm:

1. Choose n cells to measure
2. Choose level
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¥

m Suppose we read the following 2x2, g=8 array row-by-
row (1D):

m Top row: at least 3 meas. {1,2,3}

m Total of 6 measurements for the array

May 2015

2D Algorithms - motivation

1

2

Bottom row at least 3 additional meas. {1,3,4}
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2D Algorithms — motivation @

m Alternatively, if we can choose whether to measure arow or a

column

Original 1 2
array

® Toprow with t =2

0 2
0 0 7

o |eftcolumnwitht=1

1 2 1
L: U:
0 0 0

® Right column with T = 3 and 7 = 4 will reveal the entire array

m 2D reading reduced the number of measurements from 6 to 4
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Greedy 2D Algorithms @

m Select “best” n cells and threshold t

m The criterion: minimize the sum of expected uncertainties
after measurement.

Q=log(U-L+1)
Expected uncertainty, cell i;

Hi(t) = Pr(c; < 7)log(r — L;) + Pr(c; =z ) log(U; — 7+ 1) =

T—L; Ui—7+1
log(t— L;) + log(U; — 7+ 1
Ui—Li + 1 gr =L Ui— L + 1 S :
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The CRDF algorithm @

m The Column Row Degree of Freedom (CRDF) algorithm
has the ability to choose in each scan whether to
measure a row or column based entropy criterion

m The criterion is calculated for all rows and columns and
for all possible thresholds

m The measurement is executed for the best threshold and
row\column
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The ANDF algorithm @

m The Any N degree of Freedom (ANDF) is very similar to
the CRDF algorithm, however has the ability to choose
any ‘n’ cells out of the 2D nxn array

m The ANDF is more flexible algorithm but it also very
greedy and difficult to implement on hardware

m The ANDF serves as a practical lower bound

m The performance of both CRDF and ANDF was evaluated
by simulations
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2D Lower Bound @

m Theorem:

Given the uniform level distribution, a lower bound on the
average number of n-cell measurements required to read an

array of N cells is given by

N d N-d
I—1| (N\ (2 )
LB2D(N.q.n) = LB(N.¢)+ (g—1)+ > {‘ ‘.(d).(_) ‘(ff )

n G
d=n+1 1

The 1D lower bound
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Selection Domains @

m Only rows — binary search

m Rows or columns — CRDF algorithm
® column/row degrees of freedom

m Any n —» ANDF algorithm
® any n degrees of freedom

m We also derived 1D & 2D lower bounds
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2D - Results

Different scan methods for n=4
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2D — Results cont.

Different scan methods for n=g/2
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Non-uniform Level Distributions @

m Prior bias toward level O:

Pr(c = 0) = m
s YT T

® Forsomerealm=>1
m Theremaining levels are distributed as:

U+ 1—m
Pric=k.k#0)=
r(c ) U+ 1)

m Theorem: the expected uncertainty after measurement of
a cell with [0,U] uncertainty window is

_m U+ 1—m)(r- 1))
H(r) = T+ 1 logtl " mU/

mU )

(U+1—-m(U—-1+1)

log(U — 7 + 1).
U0+ 1) ogU-7+1)
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Non-Uniform Distribution - Results

Different scan methods for 2D nxn array — q=8, 50% zeros
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m Analysis of 1D read algorithms + derivation of a
lower bound were presented

m We have also shown greedy 2D algorithms + a 2D
lower bound

Future work:

m Combining coding in order to skip measurements
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