

Seminar on Coding for Non-Volatile Memories 236803/048704 – CS/EE Departments, Technion

INTRODUCTION

Coding

Definition:

Coding is a <u>representation</u> of information designed for some <u>engineering objective</u>.

- Classical examples:
 - Error-correcting codes
 - Data compression
 - Cryptographic codes (ciphers)
 - Software source code

The Birth of Coding

• 1948 Communication channels Nothing needed Coding sufficient Nothing helps

Shannon Codes

• Code = unstructured subset of $\{0,1\}^n$

The Birth of Structured Coding

A Brief History of Coding

t=1	t=const	any t (but non-		whp, low	whp, low complexity low error	Capacity , achieving (but need
ι= ι 	1-001151	binary)	whp	complexity	floor	long blocks)
1950	1959	1960	1967	1993	1998	2009
Hamming	g BCH	Reed Solomon	Convolutional codes (Viterbi decoder)	1 01 00	LDPC codes (showtime)	Polar codes

What is Common?

1) Communications:

2) Symmetric errors:

Coding for Communications

Communication

Coding for Storage

Storage

Storage → 2 Channels

Storage

Coding under the reign of HDD

- 1956-2006: Storage = Hard-Disk Drive
- Read channel similar to a communication channel

- Write/read synchronization issues
 - Run-Length Limited (RLL) codes

Non-Volatile Storage

- Solid-State Drive
 - silicon-based cells in 2D/3D matrix
- Leading technology: NAND flash
- More expensive, but much faster
- Capacity scales by "Moore's law"

Coding for Non-Volatile Storage

- Early days: SSD is memory
 - Primitive error-correction, e.g. Hamming codes
- Channel <u>very</u> different from communications!

Data Representation

Example: trivial mapping

Data Representation

Example: multi-level flash

Data Representation

Example: error-correcting codes

Coding: The General Problem

Find good good that overcome physical issue and give $U = \hat{U}$

The General Coding Method

Example 1

1. Physical issue

- 2. Error model
- 3. Sufficient + necessary conditions
- 4. Code constructions vs. upper bounds
- 5. Decoding

1. Channel with $0\rightarrow 1$ and $1\rightarrow 0$

- 2. At most t 0→1 and 1→0 combined
- 3. $D_H(x,y)>2t$ for all x,y in C (necessary and sufficient)
- 4. Hamming code vs. Hamming bound
- 5. Find codewords at Hamming distance t or less from received word

The General Problem

Examples 2,3,4,...

1. Physical impairment

2. Error model

3. Sufficient + necessary conditions

4. Code constructions vs. upper bounds

5. Decoding

Coding for NVMs

About the Course

- URL
 - http://ycassuto.eew.technion.ac.il/teaching/048704-2/
- Some notes
 - 2 Units. Graduate course, open to excellent undergraduates in their last year upon instructor approval.
 - Strong mathematical scope
 - Lectures by students
 - Weekly paper summaries